- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
逆变器
逆变器的的功能是将直流电转换为交流电,为“逆向”的整流过程,因此称为“逆变”。光伏阵列所发的电能为直流电能,然而许多负载需要交流电能,如变压器和电机等。直流供电系统有很大的局限性,不便于变换电压,负载应用范围也有限。除特殊用电负荷外,均需要使用逆变器将直流电变换为交流电。逆变器除能将直流电能变换为交流电能外,还具有自动稳压的功能,可以改善风光互补发电系统的供电质量,在联网型光伏发电系统也需要使用具有并网功能的交流逆变器。逆变器种类很多,根据逆变器线路逆变原理的不同,有自激振荡型逆变器、阶梯波叠加逆变器和脉宽调制(PWM)逆变器等。根据逆变器主回路拓扑结构不同,可分为半桥结构、全桥结构、推挽结构等。
逆变器的控制可以使用逻辑电路或专用的控制芯片,也可以使用通用单片机或DSP芯片等,控制功率开关管的门极驱动电路。逆变器输出可以带有一定的稳压能力,以桥式逆变器为例,如果设计逆变器输出的交流母线额定电压峰值比其直流母线额定电压低10%~20%(目的是储备一定的稳压能力),则逆变器经PWM调制输出其幅值可以有向高10%~20%调节的裕量,向低调节则不受限制,只需降低PWM的开通占空比即可。因此逆变器输人直流电压波动范围向下可以到-15%~20% ,向上只要器件耐压允许则不受限制,只需调小输出脉宽即可(相当于斩波)。当蓄电池或光伏电池输出电压较低时,逆变器内部需配置升压电路,升压可以使用开关电源方式升压也司以使用直流充电泵原理升压。逆变器使用输出变压器形式升压,即逆变器电压与蓄电池或光伏电池阵列电压相匹配,逆变器输出较低的交流电压,再经工频变压器升压送人输电线路。需要说明的是,不论是变压器还是电子电路升压,都要损失一部分能量。最佳逆变器工作模式是直流输人电压与输电线路所需要的电压相匹配,直流电力只经过一层逆变环节,以降低变换环节的损耗。一般来说逆变器的效率在90%以上。逆变环节损耗的能量转换为功率管、变压器的热形式能量,该热量对逆变器的运行是不利的,威胁装置的安全,要使用散热器、风扇等将此热量排出装置以外。逆变损耗通常包括二部分:导通损耗和开关损耗,MOSFET管开关频率较高,导通阻抗较大,由其构成的逆变器多工作在几十到上百千赫兹频率下;而IGBT则导通压降相对较小,开关损耗较大,开关频率在几千到几十千赫兹之间一般选择十千赫兹以下。开关并非理想开关,当其开通过程中电流有一上升过程,管子端电压有一下降过程,电压与电流交叉过程的损耗就是开通损耗,关断损耗为电压电流相反变化方向的交叉损耗。降低逆变器损耗主要是要降低开关损耗,新型的谐振型开关逆变器,在电压或电流过零点处实施开通或关断,从而可以降低开关损耗。
一般来说,逆变器的技术指标包括:使用环境为海拔不超过3000m, 温度0~+40C (也有特殊用途的逆变器要求低温为- 10C或更低的),相对湿度90以下,直流输人额定电压士15%,输出电压波动范围不超过-5%,频率波动范围不超过-1%,谐波畸变率不超过10%,允许负载功率因数变化范围0. 5~1, 0。三相输出电压不对称度小于5%,噪声小于80dB,具有过载200%额定输出电流1分钟的能力,逆变器在额定负载下应能够可靠地启动。 逆变器保护功能应具有:输出短路保护、输出过电流保护、输出过电压保护、输出欠电压保护、输出缺相保护、功率电路超温保护等。例如,当传感器检测到输出有短路时,控制电路立即关闭功率管的驱动从而关断功率管的输出,实现对逆变器的保护。
1.方波逆变器
此逆变器输出的电压波形为方波,逆变器线路简单,价格便宜,实现较为容易。缺点是方波电压中含有大量的高次谐波成分,在负载中会产生附加的损耗,并对通信等设备产生较大的干扰,需要外加额外的滤波器。此类逆变器多见于早期,设计功率不超过几百瓦的小容量逆变器。
2.阶梯波逆变器
阶梯波逆变器输出的电压波形为阶梯波形,阶梯波逆变器的优点是输出波形接近正弦波,比方波有明显的改善,高次谐波含量减少。当阶梯波的阶梯达到16个以上时,输出的波形为准正弦波,整机效率较高。但此逆变器往往需要多组直流电源供电,需要的功率开关管也较多,给光伏阵列分组和蓄电池分组带来不便。
3.正弦波PWM逆变器
正弦波逆变器的优点是输出波形基本为正弦波,在负载中只有很少的谐波损耗,对通信设备干扰小,整机效率高。缺点是设备复杂、价格高。随着电力电子技术的进步,脉宽调制技术的普及,大容量PWM型正弦波逆变器逐渐成为逆变器的主流产品。以典型的单相全桥式逆变器为例,四个对角的开关功率管以每个对角线的二个开关管为一组,依次导通和关断,在负载二端就产生交替的正负电压,形成交流输出。当此交替导通的频率与负载所需的交流频率相同时,其输出的电压就为方波电压。当开关管以比逆变交流输出电压高许多的频率开关,且每次开关的脉宽按照正弦波的幅值调制时,就变成了正弦波脉宽调制输出的逆变器,加滤波器后其输出的电压波形就是正弦波输出逆变器。
PWM型逆变器广泛使用功率场效应管(Power MOSFET)、绝缘栅双极型晶体管(IGBT)、可关断型晶闸管(GTO)等作为开关管,而控制部分使用专用型PWM开关集成电路以及带有PWM输出的DSP和单片机芯片。构成一台实用型逆变器需要主功率电路、控制电路和辅助电路(如保护、测量和监控等)。其逆变过程为光伏阵列或蓄电池输出的直流电进人逆变器直流母线,经开关电路(如桥式电路)将直流电变成正反方向输出的、脉宽为正弦调制的交流脉冲波,此脉宽调制的交流电压经滤波电路变成正弦交流电压输出,如需要升压则外接升压变压器,再经输电线路将交流电力送往负载。PWM调制输出信号频率称作逆变器的调制频率或开关频率,它一般是逆变器输出交流基波频率的十几倍、几十倍到上百倍。典型的逆变器交流输出频率为50Hz,逆变器开关频率可以几百到几十千赫。PWM调制的开关频率愈高,则逆变器输出波形谐波愈小,但开关过程带来的功率损耗则愈大,要权衡选取开关管PWM调制的开关频率。
逆变器输出所接的滤波器通常为低通滤波器,由电感器和电容器构成T型低通滤波形式。滤波器的设计要考虑滤波能力也要考虑可能带来的电磁谐振。逆变器按输出类型,又分为电压型逆变器和电流型逆变器。
4.变颇器
变频器是由三相整流器、电压源的无源逆变器和控制器构成,由于光伏发电系统所发电力为直流的特殊性,光伏变频器不需要三相整流器,而直接将变频器的直流母线接到光伏发电系统的直流母线上。鉴于光伏电力受光照的自然环境影响较大,直流母线一般要加蓄电池来稳定变频器的运行;在变频器控制端子要加弱电控制信号,不停地调节变频器的设定频率,改变变频器输出功率,以达到与光伏阵列最大功率点跟踪的目的。变频器作为可调节性负载要与光伏阵列的MPPT联合控制,在光伏发电系统中,电动机类动力性负荷尽量配合使用变频器,以减少电动机启动电流的冲击,并可以灵活调节电动机负荷。
光伏并网逆变器的工作原理
逆变器将直流电转化为交流电,若直流电压较低,则通过交流变压器升压,即得到标准交流电压和频率。对大容量的逆变器,由于直流母线电压较高,交流输出一般不需要变压器升压即能达到220V,在中、小容量的逆变器中,由于直流电压较低,如12V、24V,就必须设计升压电路。
中、小容量逆变器一般有推挽逆变电路、全桥逆变电路和高频升压逆变电路三种,推挽电路,将升压变压器的中性插头接于正电源,两只功率管交替工作,输出得到交流电力,由于功率晶体管共地边接,驱动及控制电路简单,另外由于变压器具有一定的漏感,可限制短路电流,因而提高了电路的可靠性。其缺点是变压器利用率低,带动感性负载的能力较差。
全桥逆变电路克服了推挽电路的缺点,功率晶体管调节输出脉冲宽度,输出交流电压的有效值即随之改变。由于该电路具有续流回路,即使对感性负载,输出电压波形也不会畸变。该电路的缺点是上、下桥臂的功率晶体管不共地,因此必须采用专门驱动电路或采用隔离电源。另外,为防止上、下桥臂发生共同导通,必须设计先关断后导通电路,即必须设置死区时间,其电路结构较复杂。
光伏并网逆变器逆变电路的控制电路:
上述几种逆变器的主电路均需要有控制电路来实现,一般有方波和正旋波两种控制方式,方波输出的逆变电源电路简单,成本低,但效率低,谐波成份大。正弦波输出是逆变器的发展趋势,随着微电子技术的发展,有PWM功能的微处理器也已问世,因此正弦波输出的逆变技术已经成熟。
1.方波输出的逆变器目前多采用脉宽调制集成电路,如SG3525,TL494等。实践证明,采用SG3525集成电路,并采用功率场效应管作为开关功率元件,能实现性能价格比较高的逆变器,由于SG3525具有直接驱动功率场效应管的能力并具有内部基准源和运算放大器和欠压保护功能,因此其外围电路很简单。
2.正弦波输出的逆变器控制集成电路,正弦波输出的逆变器,其控制电路可采用微处理器控制,如INTEL公司生产的80C196MC、摩托罗拉公司生产的MP16以及MI-CROCHIP公司生产的PIC16C73等,这些单片机均具有多路PWM发生器,并可设定上、上桥臂之间的死区时间,采用INTEL公司80C196MC实现正弦波输出的电路,80C196MC完成正弦波信号的发生,并检测交流输出电压,实现稳压。
射频工程师养成培训教程套装,助您快速成为一名优秀射频工程师...
天线设计工程师培训课程套装,资深专家授课,让天线设计不再难...
上一篇:无线充电技术探寻
下一篇:智能手机电池
三种新电池哪种能在未来称霸