- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
高性能处理器的负载点电源设计
处理器的发展
随着集成度不断提高,以及特征尺寸不断缩小,处理器内核电压也开始降至 1V 以下,同时其电流消耗也随着工作速度的提高而上升。工艺技术的改进必须与负载点电源设计技术的发展要求同步。适用于二十世纪八九十年代的电源管理解决方案未必适用于目前的高性能处理器。为处理器提供核心动力面临着若干技术上的挑战,如:如何放置大型旁路电容、浪涌电流、稳压精度与定序等。
能量的来源——大型旁路电容
处理器的总电流不单由电源自身提供,还由处理器的旁路以及电源的大型电容器提供。如果处理器工作强度发生突然变化导致负载急剧瞬变,那么浪涌电流首先由本地旁路电容提供——通常为较小的陶瓷电容,它们可针对负载变化做出迅速响应。随着处理速度从 500 MHz 增至 1GHz 乃至更高,我们还需要存储更多能量的旁路电容,这是至关重要的。另一能量来源就是电源的大型电容。对于较新型的高性能处理器而言,旁路电容应等于乃至大于电源的大型电容。为了避免造成稳定性方面的问题,我们必须注意确保电源在增加旁路电容的情况下保持稳定。即便电源评估板在基准情况下工作良好无误,但连接至负载时也可能出错。为确保对电源的反馈环路进行补偿,以适应更大的旁路电容。大型旁路电容必须彼此靠近,才能减小寄生效应。
避免浪涌电流
带有大型旁路电容的电源在启动时可能发生问题,因为电源启动时可能难以为大型旁路电容充足电并满足处理器的负载要求。因此,电源可能会在过电流情况下断电,电压也可能在启动时暂时下降(变为单调),这就可能导致处理器锁死。为了减小浪涌电流,我们可延长内核电压电源的启动时间,从而让旁路电容慢慢充电。众多 DC/DC 调节器均具有可调节的慢启动引脚,以延长电压上升时间。如果调节器不带慢启动引脚,那么我们可以采用外部 MOSFET 与 RC 充电方案来实现。超额电源设计是另一种解决浪涌电流的简单方法,前提是设计人员能够承受更高额定电流带来的体积增大、价格升高的不利因素。如果处理器要求的话,我们也建议采用带有电流限制的 DC/DC 调节器来保持单调的电压斜线上升。
精度调节
多年前的处理器要求电压容限达 5% 之多,但随着工艺节点不断缩小,内核电压也降至 1V 以下,因此容限减小,甚至可能要求线路(工作输入电压范围)、负载(工作输出电流范围)和工作温度上的误差容限不超过 3%。为确保精度调节能够满足处理器的要求,一般产品说明书的电气特性部分保证设备在一定温度和线路条件下的性能误差在参考电压 1% 的范围内。负载精度在3A情况下误差最大为 0.09%。TPS54310 在各种线路、负载以及温度条件下都能够轻松实现误差在 3% 以内。表1 给出了TPS54310 的调节精度示例。
AC 精度调整
如果处理器在从低工作到高工作状态变化中遇到动态负载范围突变,它会迅速消耗掉更多的电流,这就会导致电压下降。电源必须对电压变化立即做出反应以保持调节的准确度(图 1)。电压峰值 (voltage spike) 应不超过处理器的电压容限规范,因此您应准确了解处理器产品说明书中所列的最大绝对内核电压要求是多少。为了提高电源在瞬态情况下的调节性能,我们可降低电感器的值,从而加速稳压器的响应时间,并增加电容来提供更强的能量存储能力,以适应电压下降以及电压尖峰 (spike) 的情况。较好的做法是采用电源电压监控器来保护处理器,如果电压在系统掉电过程中下降过低,那么就能提供良好的断电重置功能。
定序
越来越多的处理器制造商开始针对核心与 I/O 上电定序提供建议的时序指南。一旦我们了解了时序要求,就可根据负载点电源设计者的要求来选择适当的技术。对于双电源而言,上电和断电有几种不同的方法,分别为:顺序、同时排序和预偏置启动。
[p]
如果内核与 I/O 上电之间要求有几毫秒的短暂间隔,那么可实施逐次排序 (sequential sequencing),具体顺序随意。其方法之一很简单,就是将一个稳压器的POWERGOOD 引脚连接至另一个稳压器的 ENABLE 引脚即可。另一种方法则是采用热插拔类型的定序集成电路来控制每个电压电平的打开和关闭。这能够实现灵活性,但也会占用板级空间,并增加成本。
如果我们需要最小化上电与断电期间的内核与 I/O 电压差动的话,那么就可采用同时排序。在实施同时排序时,内核与 I/O 电压彼此跟踪,直至达到所理想的较低电压电平为止。这时,较低的电压在其稳压点上不再上升,而较高电压继续上升。德州仪器 (TI) 推出了带有 TRACKIN 引脚的 TPS54x80 开关稳压器和带有自动跟踪功能的 PTH 系列 DC/DC 模块,它们都可用于实施同时排序。图2显示了上电过程中的内核与 I/O 电压跟踪情况。
如果在内核处于“打开” 很久前就施加 I/O 电压,而且内核与 I/O 电压之间必须存在最小增量,那么我们可方便地实施预偏置方法。在这种情况下,处理器制造商建议在上电前用二极管对内核电压进行预偏置。二极管上的电压下降在内核与 I/O 电压之间保持最小增量。采用同步补偿 DC/DC 转换器时,应确保低压侧MOSFET 在启动过程中保持关闭,否则已经施加给内核的失调电压就会在 DC/DC 转换器启动时汇至接地,这可能会损坏二极管。内核电压随二极管电压下降而随 I/O 电压相应变动,这表明处理器的内核电压在打开前已经有了偏移值。随后,内核在失调电压的基础上斜线上升,直至达到所需的电压电平为止。图3给出了预偏置启动波形图的一个示例。TPS54x73 开关稳压器与 PTH 系列 DC/DC 模块可用于实施预偏置启动。
为 PLL 供电
许多较新型的处理器除了内核与 I/O 电压之外还要求单独的 PLL(锁相环)电源。如果执行代码时PLL的电压处于最小和最大容限之外,而且很不稳定,那么就可能会导致数据损坏,或处理器锁死。我们可采用简单的预防措施,如使用电源电压监控器 (SVS) 等,来保护数据的完整性。内核与 I/O 电压稳定后,PLL电压的容限必须在一定的时钟周期之内,如在执行任何代码前容限必须保持在最大1,000 个时钟周期内。某些处理器包括内置的SVS功能,可让PLL电压趋于稳定。如果您的处理器不具备上述的内部处理功能,那么可采用电压容限要求较严格的电源电压监控器来确认内核与 I/O 稳定性。请确保监控器的“RESET”时间大于 PLL 电压稳定下来所需的时钟周期数。电源纹波抑制 (PSRR) 较强的低压降调节器(如 TPS79xxx 系列)有助于降低不必要的噪声尖峰进入 PLL。
总结
目前,先进的高性能处理器需要高性能负载点电源。更大的旁路电容、排序、浪涌电流、精度调节以及 PLL 供电电压监控都是目前负载点电源所必须解决的问题。5年以前适用的电源解决方案可能已不再适用于较新型的处理器。请记住,DC/DC稳压器是针对特定市场和终端设备而专门设计的,有着特定的成本和性能目标。
射频工程师养成培训教程套装,助您快速成为一名优秀射频工程师...
闂傚倸鍊搁崐鎼佸磹瀹勬噴褰掑炊椤掑鏅悷婊冪箻楠炴垿濮€閵堝懐鐤€濡炪倖妫佸Λ鍕償婵犲洦鈷戠憸鐗堝笒娴滀即鏌涢悩鍐叉诞鐎规洘鍨块獮姗€骞囨担鐟板厞婵$偑鍊栭崝鎴﹀垂閸︻厾鐭堟い鏇楀亾婵﹥妞藉Λ鍐ㄢ槈濞嗘ɑ顥i梻浣呵归敃銈夆€﹂悜鐣屽祦闁硅揪绠戠粈瀣亜閹烘垵鈧骞婂┑鍡╂富闁靛牆妫涙晶顒傜棯閺夎法孝闁宠绉电换婵嬪炊閵娿垺瀚藉┑鐐存尰閸╁啴宕戦幘瀵哥濞达絽鍟垮ú锕傚疾椤掑嫮鍙撻柛銉e妿閳藉鏌i幒鎴犱粵闁靛洤瀚伴獮鎺楀箣濠垫劒鎮i梻浣芥閸熶即宕伴弽顓炶摕闁哄洢鍨归柋鍥ㄧ節閸偄濮堥弫鍫ユ⒒娴e懙褰掝敄閸愵喖绀夌€广儱顦闂佸憡娲﹂崹浼村礃閳ь剟姊洪棃娑掑悍濠碘€虫搐閳绘捇濡堕崱娆戠槇闂佸啿鐨濋崑鎾绘煕閺囥劌澧版い锔垮嵆濮婃椽宕崟顓犲姽缂傚倸绉崇欢姘舵偘椤斿槈鐔煎礂閻撳孩鐎梻浣告啞濞诧箓宕㈣ぐ鎺戠劦妞ゆ巻鍋撻柨鏇ㄤ簻椤繐煤椤忓懎浠梺鍝勵槹鐎笛傜昂濠碉紕鍋戦崐鏍垂閻㈡潌鍥偨缁嬭銉ッ归敐鍛棌婵炵鍔戦弻宥堫檨闁告挾鍠栭悰顕€宕橀纰辨綂闂侀潧鐗嗛幊搴g玻濞戞瑧绡€闁汇垽娼у瓭闁诲孩鍑归崢濂稿煝閹炬椿鏁婇柛鎾楀拑绱抽梻浣呵归張顒勬嚌妤e啫鐒垫い鎺戝濡垹绱掗鑲╁缂佹鍠栭崺鈧い鎺戝閳ь兛绶氬浠嬵敇閻愭鍚呴梻浣瑰濞插秹宕戦幘鍓佺<闁绘瑢鍋撻柛銊ョ埣瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷 | More...
闂傚倸鍊搁崐鎼佸磹瀹勬噴褰掑炊椤掑鏅悷婊冪箻楠炴垿濮€閵堝懐鐤€濡炪倖妫佸Λ鍕償婵犲洦鈷戠憸鐗堝笒娴滀即鏌涢悩鍐叉诞鐎规洘鍨块獮姗€骞囨担鐟板厞婵$偑鍊栭崝鎴﹀垂閸︻厾鐭堟い鏇楀亾婵﹥妞藉Λ鍐ㄢ槈濞嗘ɑ顥i梻浣呵归敃銈夆€﹂悜鐣屽祦闁硅揪绠戠粈瀣亜閹烘垵鈧骞婂┑鍡╂富闁靛牆妫涙晶顒傜棯閺夎法孝闁宠绉电换婵嬪炊閵娿垺瀚藉┑鐐存尰閸╁啴宕戦幘瀵哥濞达絽鍟垮ú锕傚疾椤掑嫮鍙撻柛銉e妿閳藉鏌i幒鎴犱粵闁靛洤瀚伴獮鎺楀箣濠垫劒鎮i梻浣芥閸熶即宕伴弽顓炶摕闁哄洢鍨归柋鍥ㄧ節閸偄濮堥弫鍫ユ⒒娴e懙褰掝敄閸愵喖绀夌€广儱顦闂佸憡娲﹂崹浼村礃閳ь剟姊洪棃娑辨Ф闁稿寒鍣e畷鎴﹀箻鐠囨彃鍞ㄥ銈嗗姉閸犲孩绂嶉悙顒佸弿婵☆垳鍘ф禍楣冩倵濮樼偓瀚�婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柟闂寸绾惧鏌i幇顒佹儓闁搞劌鍊块弻娑㈩敃閿濆棛顦ョ紓浣哄Т缂嶅﹪寮诲澶婁紶闁告洦鍓欏▍锝夋⒑缁嬭儻顫﹂柛鏃€鍨垮濠氭晲婢跺﹦鐤€闂傚倸鐗婄粙鎴﹀煕閹烘垟鏀介柣鎰皺婢ф梻绱掗鐣屾噰鐎殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌涢幘鑼妽闁稿繑绮撻弻娑㈩敃閿濆棛顦ラ梺姹囧€楅崑鎾舵崲濠靛顥堟繛鎴濆船閸擃參姊洪柅鐐茶嫰閸樻悂鏌i幒鐐差洭闁瑰箍鍨归埞鎴犫偓锝庝簽閸婄偤姊洪懖鈹e綊鎮樺顑芥瀺闁瑰墽绮埛鎺懨归敐鍛暈闁哥喓鍋炵换娑氭嫚瑜忛悾鐢碘偓瑙勬礃缁矂鍩ユ径鎰潊闁抽敮鍋撻柟绋垮暣濮婃椽宕ㄦ繝鍐槱闂佺ǹ绻戠粙鎾诲箲閵忋倕骞㈡繛鎴炵懅閸橆亪姊洪崜鎻掍簼缂佽鍟村畷宕囨喆閸曗晙绨婚棅顐㈡处閹搁箖骞楅悩鐫酣宕惰闊剚銇勯姀鈩冪妞ゃ垺顨嗛幏鍛村礈闊厾澶�
闂傚倸鍊搁崐鎼佸磹瀹勬噴褰掑炊椤掑鏅悷婊冪箻楠炴垿濮€閵堝懐鐤€濡炪倖妫佸Λ鍕償婵犲洦鈷戠憸鐗堝笒娴滀即鏌涢悩鍐叉诞鐎规洘鍨块獮姗€骞囨担鐟板厞婵$偑鍊栭崝鎴﹀垂閸︻厾鐭堟い鏇楀亾婵﹥妞藉Λ鍐ㄢ槈濞嗘ɑ顥i梻浣呵归敃銈夋倶濠靛鍋╅梺鍨儑闂勫嫮绱掔€n亞浠㈢€规挸妫濆铏圭磼濡搫顫嶅銈嗘⒐閻楁洖宓勫┑鐐叉▕娴滄繈鎮¢悢鍏肩厽闁哄倹瀵ч幉鎼佹煟椤撶偠瀚版い顓″劵椤﹁櫕銇勯妸銉уⅵ鐎殿噮鍋婇、姘跺焵椤掑嫮宓侀柟鐑橆殔缁秹鏌嶈閸撶喎顕i崘娴嬪牚闁割偆鍠撻崢鐢告⒑鐠団€崇仭婵犮垺枪椤e潡姊绘担铏瑰笡闁规悂绠栧畷浼村箛閺夎锕傛煕閺囥劌鐏遍柡浣稿暞閵囧嫰骞囬埡浣轰患缂備胶濮惧畷鐢垫閹惧瓨濯撮柣銈庡灠閸橈繝姊虹粙璺ㄧ闁挎洏鍨归锝嗙節濮橆厽娅滄繝銏e煐钃遍柡鍜冪秮濮婅櫣绱掑Ο鍝勵潔缂備椒鐒﹂幐鎶界嵁閹版澘绀冩い鏃囆掗幏娲⒑閼姐倕鏋戞繝銏∶嵄缂備焦菧娴滄粓鏌熺€涙ḿ绠ユ俊顖楀亾闂備胶绮笟妤呭闯閿濆宓侀悗锝庡枟閺呮繈鏌嶈閸撴稓鍒掔拠娴嬫闁靛繆妾ч幏濠氭⒑閸撴彃浜為柛鐘虫崌閸╁﹪寮撮姀锛勫幈婵犵數濮撮崐鍧楀矗閸曨剚鍙忓┑鐘插鐢盯鏌熷畡鐗堝殗闁圭厧缍婇悰顔芥償閹惧厖澹曟繝鐢靛Т濞诧箓鎮″☉銏$厱婵炴垵宕弸銈囩磼閻橀潧浠遍柡灞炬礋瀹曢亶寮撮悩鎻掝瀴缂傚倷鑳剁划顖滄崲閸繄鏆﹂柛顐f礃閸ゅ鏌涢…鎴濅簼闁绘繐绠撳濠氬磼濞嗘埈妲梺瑙勭ゴ閳ь剝绉ú顏呮櫇闁稿本鑹鹃崑宥夋⒑娴兼瑧鍒板璺烘喘瀹曟垿骞橀幇浣瑰兊濡炪倖鎸鹃崑娑㈠箺閻㈠憡鈷戦柛婵嗗濠€浼存煟閳哄﹤鐏﹂柣娑卞枛铻e〒姘煎灡鐎靛矂鏌i悩鍙夌┛鐎殿喗鎸荤粩鐔煎即閵忊檧鎷绘繛杈剧到閹诧繝骞嗛崼銉︾厽妞ゆ挾鍎愬Ο鈧Δ鐘靛仜缁绘﹢寮幘缁樻櫢闁跨噦鎷�
闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗霉閿濆牊顏犵紒鈧繝鍌楁斀闁绘ɑ褰冮埀顒€顕槐鎾愁潩鏉堛劌鏋戦梺鍝勫暙閻楀嫰鍩€椤戣法绐旂€殿喕绮欓、姗€鎮欓懠鍨涘亾閸喒鏀介柨娑樺娴犙呯磼椤曞懎鐏︾€殿噮鍋婇幃鈺冪磼濡攱瀚奸梻鍌欑贰閸嬪棝宕戝☉銏″殣妞ゆ牗绋掑▍鐘炽亜閺傛娼熷ù婊勭矋閵囧嫰骞樼捄杞版勃闂佺ǹ顑冮崕鎶藉焵椤掑喚娼愭繛鍙夌矒楠炲﹪骞樼拠鑼弨婵犮垼娉涜墝闁哄閰i弻鐔兼焽閿曗偓閺嬫稓绱掗幓鎺撳仴婵﹤顭峰畷鎺戔枎閹存繂顬夐梻浣筋嚃閸犳牠鎮ラ悡搴f殾闁圭増婢橀崡鎶芥煟韫囨凹鍤欑紓宥咃躬楠炲啫饪伴崼鐔风檮婵犮垼娉涢惌鍫ュ船閻㈠憡鈷戦悹鍥ㄥ絻閸よ京绱撳鍛棦鐎规洑鍗冲浠嬵敃閵堝嫮鐟濋梻浣告惈鐞氼偊宕曢弻銉﹀亗婵炲棗绶疯ぐ鎺撳亗閹艰揪绲鹃幉鐓庘攽閻愭潙姣嗛柛銉e妿閸橀潧顪冮妶鍡橆梿鐎规洜鏁哥划锝夊籍閳ь剟骞堥妸锔剧瘈闁告侗鍣禒鈺呮⒑閸涘﹦澧柣妤冨Т椤曪綁骞橀钘変簻闂佸憡绺块崕杈╁緤閸喒鏀介柨娑樺娴滃ジ鏌涙繝鍐ㄧ伌鐎规洜顢婇妵鎰板箳閹惧瓨鐝栨俊鐐€曠换鎰版偋閸曨垰鐒垫い鎴f硶椤︼箓鏌嶇拠鏌ュ弰妤犵偞锚閻g兘宕堕懜鏁屟冣攽閿涘嫬浜奸柛濠冪墵楠炴劖銈i崘銊х崶闁瑰吋鐣崝宥夊磻閻旇褰掓偂鎼达絾鎲奸梺鎶芥敱閸ㄥ潡寮诲☉妯锋婵鐗婇弫楣冩煟鎼达紕浠涢柣鐔叉櫊瀵顓奸崼顐n€囬梻浣告啞閹搁箖宕版惔顭戞晪闁挎繂妫涚弧鈧┑顔斤供閸樿棄鈻嶉姀銈嗏拺閻犳亽鍔屽▍鎰版煙閸戙倖瀚�
婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柛娑橈攻閸欏繐霉閸忓吋缍戦柛銊ュ€婚幉鎼佹偋閸繄鐟查梺绋匡工閻栧ジ寮诲☉銏╂晝闁绘ɑ褰冩慨搴ㄦ⒑濮瑰洤鈧宕戦幘鑸靛床婵犻潧顑嗛ˉ鍫熺箾閹存繂鑸归柛鎾插嵆濮婃椽宕ㄦ繝鍛棟缂傚倸绉撮敃顏堟偘椤曗偓瀵粙濡搁敂鍓ら梻浣告啞閹稿棝宕ラ柨瀣仸缂佺粯绻傞埢鎾诲垂椤斿彞鍝楅梻渚€娼ч悧濠囧箖閸屾凹鍤曞┑鐘崇閸嬪嫰鏌i幋鐏活亪寮搁崒鐐粹拺闁告稑锕ユ径鍕煕鐎n亜顏い銈呭€垮濠氬磼濞嗘埈妲梺纭咁嚋缁绘繂鐣峰ú顏勭妞ゆ棁鍋愰敍娑㈡⒑閻熸澘鈷旂紒顕呭灦閹繝鎮㈤悡搴n啇濠电儑缍嗛崜娆撳焵椤戞儳鈧洖鐜婚崸妤€绠涢柣妤€鐗忛崢闈涱渻閵堝棙顥嗛柛瀣姍瀹曟椽鏁愰崶锝呬壕閻熸瑥瀚粈鍐╃箾閼碱剙鏋涢柣娑卞枟閹棃濡搁敃鈧惂鍕節閵忥絾纭鹃柤娲诲灦閻涱噣骞掑Δ浣叉嫽婵炶揪绲挎灙闁诡喗鍨圭槐鎺撴媴鐟欏嫬鍞夐悗娈垮枟瑜板啴銈导鏉戦唶婵犻潧娲╃欢銏$節閻㈤潧孝闁挎洏鍊濋幃褎绻濋崶銊ヤ簵闂佸搫娲ㄩ崰鍡樼濠婂牊鐓欓柡澶婄仢椤f娊鏌熼鍨汗缂佽鲸甯¢幃鈺冪驳绾應鍋撻崸妤佺厸閻忕偛澧介埥澶嬨亜椤愶絿绠炴い銏★耿閹晠宕橀崣澶屽酱闂傚倸鍊峰ù鍥敋閺嶎厼绐楁繛鎴緛缂嶆牕顭跨捄铏圭伇缂佺姵妫冮弻锝夊籍閸屾艾浠橀梺缁樺姇閿曪箓骞夌粙娆惧悑闁搞儮鏅欑粭澶愭⒑閼姐倕鏋涢柛瀣工閵嗘帗绻濆顓犲帾闂佸壊鍋呯换鍌炲汲濞嗗繆鏀介柨娑樺濞呮洜绱掓潏銊ユ诞妞ゃ垺鐟︾缓鐣岀矙閸喖寮峰┑掳鍊楁慨鐑藉磻濞戔懞鍥敍濠靛牅绨烽梻鍌欑閹测剝绗熷Δ鍛獥婵°倐鍋撻柍璇茬Ч婵偓闁靛牆妫岄幏娲煟閻樺厖鑸柛鏂胯嫰閳诲秹骞囬悧鍫㈠幍闂佸憡鍨崐鏍偓姘炬嫹