• 易迪拓培训,专注于微波、射频、天线设计工程师的培养
首页 > 电子设计 > 电源技术 > 电源技术 > 反激电源以及变压器设计解析

反激电源以及变压器设计解析

录入:edatop.com    点击:

对于探讨反激电源以及变压器这个话题,我犹豫了很久。因为关于反激的话题大家讨论了很多很多,这个话题已经被讨论的非常透彻了。关于反激电源的参数设计也有多篇文章总结。还有热心的网友,根据计算过程,自己编写了软件或电子表格把计算做的傻瓜化。但我也注意到,几乎每天都会出现关于反激设计过程出现问题而求助的帖子,所以,思量再三,我决定还是再一次提出这个话题!我不知道我是否能写出一些有新意的东西,但我会尽力去写好。不期望能入高手的法眼,但愿能给入门者一些帮助。

纵观电源市场,没有哪一个拓扑能像反激电路那么普及,可见反激电源在电源设计中具有不可替代的地位。说句不算夸张的话,把反激电源设计彻底搞透了,哪怕其他的拓扑一点不懂,在职场上找个月薪10K的工作也不是什么难事。

提纲

1、反激电路是由buck-boost拓扑演变而来,先分析一下buck-boost电路的工作过程。


工作时序说明:

t0时刻,Q1开通,那么D1承受反向电压截止,电感电流在输入电压作用下线性上升。

t1时刻,Q1关断,由于电感电流不能突变,所以,电感电流通过D1,向C1充电。并在C1两端电压作用下,电流下降。

t2时刻,Q1开通,开始一个新的周期。

从上面的波形图中,我们可以看到,在整个工作周期中,电感L1的电流都没有到零。所以,这个工作模式是电流连续的CCM模式,又叫做能量不完全转移模式。因为电感中的储能没有完全释放。

从工作过程我们也可以知道,这个拓扑能量传递的方式是,在MOS管开通时,向电感中储存能量,MOS管关断时,电感向输出电容释放能量。MOS管不直接向负载传递能量。整个能量传递过程是先储存再释放的过程。整个电路的输出能力,取决于电感的储存能力。我们还要注意到,根据电流流动的方向,可以判断出,在输入输出共地的情况下,输出的电压是负电压。

MOS管开通时,电感L1承受的是输入电压,MOS关断时,电感L1承受的是输出电压。那么,在稳态时,电路要保证电感不进入饱和,必定要保证电感承受的正向和反向的伏秒积的平衡。那么:

Vin×(t1-t0)=Vout×(t2-t1),假如整个工作周期为T,占空比为D,那么就是:Vin×D=Vout×(1-D)

那么输出电压和占空比的关系就是:Vout=Vin×D/(1-D)

同时,我们注意看MOS管和二极管D1的电压应力,都是Vin+Vout

另外,因为是CCM模式,所以从电流波形上可以看出来,二极管存在反向恢复问题。MOS开通时有电流尖峰。

上面的工作模式是电流连续的CCM模式。在原图的基础上,把电感量降低为80uH,其他参数不变,仿真看稳态的波形如下:

[p]
t0时刻,Q1开通,那么D1承受反向电压截止,电感电流在输入电压作用下从0开始线性上升。

[p] [p]

射频工程师养成培训教程套装,助您快速成为一名优秀射频工程师...

天线设计工程师培训课程套装,资深专家授课,让天线设计不再难...

上一篇:认识电源的“轻”与“重”
下一篇:电源监控软件

射频和天线工程师培训课程详情>>

  网站地图