• 易迪拓培训,专注于微波、射频、天线设计工程师的培养
首页 > 电子设计 > 电源技术 > 电源技术 > 大功率电源模块的散热设计

大功率电源模块的散热设计

录入:edatop.com    点击:

中心议题:

温度控制

解决方案

散热器设计

用Icepak软件进行优化设计

电源模块内有四个功率管(在同一平面上,分成两排),其两两间距为60mm,管径Φ20mm,每一功率管的发热功率为50W。周围环境温度:+50℃。要求设计一150mm×200mm 的平板肋片式散热器。

根据热设计基本理论,功率器件耗散的热量为

Pc=Δt/RT (W) (1)

式中,Δt 为功率管结温与周围环境温度之差,℃;RT 为总热阻,℃/W;

RTj 为功率管的内热阻,RTp 为器件壳体直接向周围环境的换热热阻,RTc 为功率管与散热器安装面之间的接触热阻,RTf 为散热器热阻。本文旨在尽量减小RTc 和RTf,使系统热阻降低,保证功率管结点温度在允许值之内。

h、Δt、D的单位分别取K m W 2 / 、K、m。代入数据,得h=6.3666 K m W 2 / 。再由公式Q= h w A w Δt计算所需散热面积(暂时不考虑肋片效率)为0.62828 2 m 。由此确定散热片肋高d = 66.476mm,考虑到肋片效率问题,取70mm。

任务分析

功率管的温度控制,主要是控制功率管的结温。生产厂一般将器件的最高结温规定为90℃-150℃。可靠性研究表明,对于使用功率元件的电子设备长期通电使壳体温度超过100℃,将导致故障率大大增加。故要求功率管壳体温度,即散热器底板温度(先忽略安装时的接触热阻)应低于100℃。以下的计算中暂取100℃。

常用散热器主要有叉指型和型材两种。对于叉指散热器,叉指向上对散热较为有利;而型材散热器则要求底板竖直放置。设计中若采用叉指型散热器,则200mm×150mm的底板占用水平空间较大,不利于PCB板的排放,故采用型材散热器。型材散热器按照肋片的形式可分为矩形肋、梯形肋、三角形类、凹抛物线肋等。其中,矩形肋的加工方法最为简单,应优先考虑。又考虑到性价比及加工工艺性,故采用铝合金作为散热器的材料。

散热器设计

1、底板的设计

底板的设计包括底板厚度和底板长高尺寸设计。在底板材料确定的条件下,底板的厚度会影响其本身的热阻,从而影响散热器底板的温度分布和均匀性。查阅部分国家标准,取散热器底板厚度为6mm。根据经验公式,底板的高度取为150mm(150和200的较小者)时换热系数较大。

2、肋片厚度的设计

无量纲数毕渥数(Biot)小于1 ,即Bi=hδ/2λ1为肋片起增强散热的判据。实验证实,对于等截面矩形肋,应满足Bi≤0.25。为了使Bi数较小,肋片以薄为宜,但如果肋片厚度过小,将给加工增加困难,取平均肋片厚度δ=1.5mm。

3、肋间距的设计

当散热器尺寸一定时,减小肋片间距,则肋化系数增加,热阻降低;但由于流体的粘滞作用,肋间距过小将引起换热效果变差。取肋片间距为1.2cm。根据这一肋片间距,散热器上共可布置30片肋片(分布于两侧)。

4、肋片高度的设计

肋片及底板的散热可近似看作自由空间垂直平壁的自然对流换热。定性温度取散热器和环境温度的平均值75°C,即:

式中:

Gr----葛拉晓夫数;

D----自然对流时的特征尺寸, D=150mm=0.15m;

Δt----壁温与周围流体温度之间的温差, Δt=100-50=50 °C;

β----体积膨胀系数, β =2.9575w10-8 1/K;

γ----运动粘度, γ =20.43w10-6 s m / 2 ;

g----重力加速度,g=9.87 2 / s m ;

代入数据得Gr=1.1673w10-7,而普朗特数Pr=0.7085,故Pr× Gr=8.2703w105,在1w104~1w109 之间,判断流态为层流。相应的对流换热系数计算公式为

推荐相关文章:

电源模块的作用可调稳压电源电路图电源滤波电路开关电源原理图电源风扇声音大

5、 散热器的校核计算

由于上述计算过程均是在散热器底板温度为100°C 的假设下进行的,所以必须对散热器温度进行核算

,以验证假设是否与实际相符。

由等截面矩形肋散热效率计算公式求得:

散热面积A=0.66 2 m ,求得Δt= Q/( h ηA)=51.2566 °C。肋片温度t 等于环境温度与温升Δt之和,即t=50+51.2566=101.2566°C;这表明,所设计的散热器在自然冷却的散热方式下,略高于器件的温升要求,下面我们再借助ICEPAK对散热器的参数进行优化,并采用强迫风冷,以期得到更低的肋片温度。

用Icepak软件进行优化设计

ICEPAK 求解的一般过程如下:

项目命名—>设定初始参数—>建立模型—>网格划分—>网格检查—>校核流态—>问题求解—>结果显示

在求解一边界条件已知的封闭体的散热问题时,如插箱、机柜等,常需用walls 来模拟实体边界,可以使其尺寸小于cabinet。我们可以对wall 定义厚度、温度、表面换热系数、热流密度等参数来模拟机柜外壳的物理特性。而如何设定上述参数,对于客观、科学的模拟现实问题、得出较准确的预测结果具有非常重要的意义。

Openings 则明确定义了热源区域同外部环境的换热通道,它一般用来表示实体壁面上的开孔。相对于无表面换热的cabinet 而言,opening 则是热量交换的重要门户。本文中无需设定walls, 我们在cabinet 的六个面上依次创建了opening , 表示求解区域同外部环境之间的空气流通和热量交换的通道。

保持ICEPAK 对求解参数的默认设置,求解过程约需40 分钟。从图1 可以看出:功率管表面的最高温度为102°C(模型中有六个openings ,迭代次数为140),与理论计算值相符。改变模型中的相关参数,我们对散热器进行了优化设计,结果表明:散热器底板厚度为6mm比较适合, 另外, 不宜为了增加肋片数目而过度减小肋片间距, 最终取8.6mm 。

图1 自然对流条件下功率管散热的温度与风速云图

尽管散热器的参数优化对温升控制略有改善,但仍不能满足功率管的可靠性要求,因此,我们考虑强迫风冷的散热方式。在上述计算模型的基础上,我们在垂直方向设定流体的流速为1.5m/s , 即在散热器底部送风,其他参数不变。我们注意到,此时系统给出的流态为紊流。在初始条件中作相应的调整后,最终求得的器件表面最高温度约为89°C。散热器底板截面温度图及横向风速云图分别见图2、3。

图2 强迫对流条件下功率管散热的温度云图

图3 强迫对流条件下功率管散热的风速云图

在求解过程中我们注意到:迭代的次数对最终结果有比较大的影响,因此如何恰当设定迭代的次数及残余误差值得进一步深入探讨。.

结论

本文对四个50W 的大功率管进行了散热设计。最终采取空气强迫对流方式。散热器采用铝合金,用型材加工,表面作黑色阳极氧化处理,具体尺寸如下:

底板规格:150mm(高)×200mm(长)×6mm(厚);

肋片形式:矩形等截面肋;

肋片厚度:1.3mm;

肋片间距:8.6mm(共36 片肋片);

肋片高度:70mm;

在自然冷却的条件下,功率管的壳温约为102℃,对应的散热器热阻为0.26 ℃/W ;在1.5m/s 的风冷条件下,功率管的壳温约为89℃,散热器热阻则为0.20 ℃/W, 满足设计要求。

射频工程师养成培训教程套装,助您快速成为一名优秀射频工程师...

天线设计工程师培训课程套装,资深专家授课,让天线设计不再难...

上一篇:机顶盒电源适配器设计方案
下一篇:平板电脑智能电池设计方案

射频和天线工程师培训课程详情>>

  网站地图