• 易迪拓培训,专注于微波、射频、天线设计工程师的培养
首页 > 电子设计 > 电源技术 > 电源技术 > 电源完整性设计2

电源完整性设计2

录入:edatop.com    点击:

电源完整性设计(8)从电源系统的角度

从电源系统的角度进行去耦设计

先插一句题外话,很多人在看资料时会有这样的困惑,有的资料上说要对每个电源引脚加去耦电容,而另一些资料并不是按照每个电源引脚都加去偶电容来设计的,只是说在芯片周围放置多少电容,然后怎么放置,怎么打孔等等。那么到底哪种说法及做法正确呢?我在刚接触电路设计的时候也有这样的困惑。其实,两种方法都是正确的,只不过处理问题的角度不同。看过本文后,你就彻底明白了。

上一节讲了对引脚去耦的方法,这一节就来讲讲另一种方法,从电源系统的角度进行去耦设计。该方法本着这样一个原则:在感兴趣的频率范围内,使整个电源分配系统阻抗最低。其方法仍然是使用去耦电容。

电源去耦涉及到很多问题:总的电容量多大才能满足要求?如何确定这个值?选择那些电容值?放多少个电容?选什么材质的电容?电容如何安装到电路板上?电容放置距离有什么要求?下面分别介绍。

电源完整性设计(9)著名的Target Impedance

著名的Target Impedance(目标阻抗)

目标阻抗(Target Impedance)定义为:

1.gif (公式4)

其中:2.gif 为要进行去耦的电源电压等级,常见的有5V、3.3V、1.8V、1.26V、1.2V等。 3.gif为允许的电压波动,在电源噪声余量一节中我们已经阐述过了,典型值为2.5%。 4.gif为负载芯片的最大瞬态电流变化量。

该定义可解释为:能满足负载最大瞬态电流供应,且电压变化不超过最大容许波动范围的情况下,电源系统自身阻抗的最大值。超过这一阻抗值,电源波动将超过容许范围。如果你对阻抗和电压波动的关系不清楚的话,请回顾“电容退耦的两种解释”一节。

对目标阻抗有两点需要说明:

1 目标阻抗是电源系统的瞬态阻抗,是对快速变化的电流表现出来的一种阻抗特性。

2 目标阻抗和一定宽度的频段有关。在感兴趣的整个频率范围内,电源阻抗都不能超过这个值。阻抗是电阻、电感和电容共同作用的结果,因此必然与频率有关。感兴趣的整个频率范围有多大?这和负载对瞬态电流的要求有关。顾名思义,瞬态电流是指在极短时间内电源必须提供的电流。如果把这个电流看做信号的话,相当于一个阶跃信号,具有很宽的频谱,这一频谱范围就是我们感兴趣的频率范围。

如果暂时不理解上述两点,没关系,继续看完本文后面的部分,你就明白了。

电源完整性设计(10)需要多大的电容量[p]

需要多大的电容量

有两种方法确定所需的电容量。第一种方法利用电源驱动的负载计算电容量。这种方法没有考虑ESL及ESR的影响,因此很不精确,但是对理解电容量的选择有好处。第二种方法就是利用目标阻抗(Target Impedance)来计算总电容量,这是业界通用的方法,得到了广泛验证。你可以先用这种方法来计算,然后做局部微调,能达到很好的效果,如何进行局部微调,是一个更高级的话题。下面分别介绍两种方法。


方法一:利用电源驱动的负载计算电容量

设负载(容性)为30pF,要在2ns内从0V驱动到3.3V,瞬态电流为:

5.gif(公式5)

如果共有36个这样的负载需要驱动,则瞬态电流为:36*49.5mA=1.782A。假设容许电压波动为:3.3*2.5%=82.5 mV,所需电容量为

C=I*dt/dv=1.782A*2ns/0.0825V=43.2nF

说明:所加的电容实际上作为抑制电压波纹的储能元件,该电容必须在2ns内为负载提供1.782A的电流,同时电压下降不能超过82.5 mV,因此电容值应根据82.5 mV来计算。记住:电容放电给负载提供电流,其本身电压也会下降,但是电压下降的量不能超过82.5 mV(容许的电压波纹)。这种计算没什么实际意义,之所以放在这里说一下,是为了让大家对去耦原理认识更深。

方法二:利用目标阻抗计算电容量(设计思想很严谨,要吃透)

为了清楚的说明电容量的计算方法,我们用一个例子。要去耦的电源为1.2V,容许电压波动为2.5%,最大瞬态电流600mA,

第一步:计算目标阻抗

6.gif

第二步:确定稳压电源频率响应范围。

和具体使用的电源片子有关,通常在DC到几百kHz之间。这里设为DC到100kHz。在100kHz以下时,电源芯片能很好的对瞬态电流做出反应,高于100kHz时,表现为很高的阻抗,如果没有外加电容,电源波动将超过允许的2.5%。为了在高于100kHz时仍满足电压波动小于2.5%要求,应该加多大的电容?

第三步:计算bulk电容量

当频率处于电容自谐振点以下时,电容的阻抗可近似表示为:

7.gif

频率f越高,阻抗越小,频率越低,阻抗越大。在感兴趣的频率范围内,电容的最大阻抗不能超过目标阻抗,因此使用100kHz计算(电容起作用的频率范围的最低频率,对应电容最高阻抗)。

8.gif

第四步:计算bulk电容的最高有效频率

当频率处于电容自谐振点以上时,电容的阻抗可近似表示为:

9.gif[p]

频率f越高,阻抗越大,但阻抗不能超过目标阻抗。假设ESL为5nH,则最高有效频率为:10.gif。这样一个大的电容能够让我们把电源阻抗在100kHz到1.6MHz之间控制在目标阻抗之下。当频率高于1.6MHz时,还需要额外的电容来控制电源系统阻抗。

第五步:计算频率高于1.6MHz时所需电容

如果希望电源系统在500MHz以下时都能满足电压波动要求,就必须控制电容的寄生电感量。必须满足11.gif,所以有:

12.gif

假设使用AVX公司的0402封装陶瓷电容,寄生电感约为0.4nH,加上安装到电路板上后过孔的寄生电感(本文后面有计算方法)假设为0.6nH,则总的寄生电感为1 nH。为了满足总电感不大于0.16 nH的要求,我们需要并联的电容个数为:1/0.016=62.5个,因此需要63个0402电容。

为了在1.6MHz时阻抗小于目标阻抗,需要电容量为:

13.gif

因此每个电容的电容量为1.9894/63=0.0316 uF。

综上所述,对于这个系统,我们选择1个31.831 uF的大电容和63个0.0316 uF的小电容即可满足要求。

注意:以上基于目标阻抗(Target Impedance)的计算,只是为了说明这种方法的基本原理,实际中不能这样简单的计算就了事,因为还有很多问题需要考虑。学习的重点是这种方法的核心思想。


电源完整性设计(11)相同容值电容的并联

使用很多电容并联能有效地减小阻抗。63个0.0316 uF的小电容(每个电容ESL为1 nH)并联的效果相当于一个具有0.159 nH ESL的1.9908 uF电容。

14.jpg

图10 多个等值电容并联

单个电容及并联电容的阻抗特性如图10所示。并联后仍有相同的谐振频率,但是并联电容在每一个频率点上的阻抗都小于单个电容。但是,从图中我们看到,阻抗曲线呈V字型,随着频率偏离谐振点,其阻抗仍然上升的很快。要在很宽的频率范围内满足目标阻抗要求,需要并联大量的同值电容。这不是一种好的方法,造成极大地浪费。有些人喜欢在电路板上放置很多0.1uF电容,如果你设计的电路工作频率很高,信号变化很快,那就不要这样做,最好使用不同容值的组合来构成相对平坦的阻抗曲线。

电源完整性设计(12)不同容值电容的并联

不同容值电容的并联与反谐振(Anti-Resonance)

容值不同的电容具有不同的谐振点。图11画出了两个电容阻抗随频率变化的曲线。[p] [p]

你可能会说,只用一个容值,只要并联电容数量足够多,也能达到同样低的阻抗。的确如此,但是在实际应用中你可以算一下,多数时候,所需要的电容数量很大。真要这样做的话,可能你的电路板上密密麻麻的全是电容。既不专业,也没必要。

选择电容组合,要考虑的问题很多,比如选什么封装、什么材质、多大的容值、容值的间隔多大、主时钟频率及其各次谐波频率是多少、信号上升时间等等,这需要根据具体的设计来专门设计。

通常,用钽电容或电解电容来进行板级低频段去耦。电容量的计算方法前面讲过了,需要提醒一点的是,最好用几个或多个电容并联以减小等效串联电感。这两种电容的Q值很低,频率选择性不强,非常适合板级滤波。

高频小电容的选择有些麻烦,需要分频段计算。可以把需要去耦的频率范围分成几段,每一段单独计算,用多个相同容值电容并联达到阻抗要求,不同频段选择的不同的电容值。但这种方法中,频率段的划分要根据计算的结果不断调整。

一般划分3到4个频段就可以了,这样需要3到4个容值等级。实际上,选择的容值等级越多,阻抗特性越平坦,但是没必要用非常多的容值等级,阻抗的平坦当然好,但是我们的最终目标是总阻抗小于目标阻抗,只要能满足这个要求就行。

在某个等级中到底选择那个容值,还要看系统时钟频率。前面讲过,电容的并联存在反谐振,设计时要注意,尽量不要让时钟频率的各次谐波落在反谐振频率附近。比如在零点几微法等级上选择0.47、0.22、0.1还是其他值,要计算以下安装后的谐振频率再来定。

还有一点要注意,容值的等级不要超过10倍。比如你可以选类似0.1、0.01 、0.001这样的组合。因为这样可以有效控制反谐振点阻抗的幅度,间隔太大,会使反谐振点阻抗很大。当然这不是绝对的,最好用软件看一下,最终目标是反谐振点阻抗能满足要求。

高频小电容的选择,要想得到最优组合,是一个反复迭代寻找最优解的过程。最好的办法就是先粗略计算一下大致的组合,然后用电源完整性仿真软件做仿真,再做局部调整,能满足目标阻抗要求即可,这样直观方便,而且控制反谐振点比较容易。而且可以把电源平面的电容也加进来,联合设计。

图13是一个电容组合的例子。这个组合中使用的电容为:2个680uF钽电容,7个2.2uF陶瓷电容(0805封装),13个0.22uF陶瓷电容(0603封装),26个0.022uF陶瓷电容(0402封装)。图中,上部平坦的曲线是680uF电容的阻抗曲线,其他三个容值的曲线为图中的三个V字型曲线,从左到右一次为2.2uF、0.22uF、0.022uF。总的阻抗曲线为图中底部的粗包络线。

这个组合实现了在500kHz到150MHz范围内保持电源阻抗在33毫欧以下。到500MHz频率点处,阻抗上升到110毫欧。从图中可见,反谐振点的阻抗控制得很低。

2.gif

图13 设计实例

小电容的介质一般常规设计中都选则陶瓷电容。NP0介质电容的ESR要低得多,对于有更严格阻抗控制的局部可以使用,但是注意这种电容的Q值很高,可能引起严重的高频振铃,使用时要注意。[p]

封装的选择,只要加工能力允许,当然越小越好,这样可以得到更低的ESL,也可以留出更多的布线空间。但不同封装,电容谐振频率点不同,容值范围也不同,可能影响到最终的电容数量。因此,电容封装尺寸、容值要联合考虑。总之最终目标是,用最少的电容达到目标阻抗要求,减轻安装和布线的压力。

电源完整性设计(15)电容的去耦半径

电容去耦的一个重要问题是电容的去耦半径。大多数资料中都会提到电容摆放要尽量靠近芯片,多数资料都是从减小回路电感的角度来谈这个摆放距离问题。确实,减小电感是一个重要原因,但是还有一个重要的原因大多数资料都没有提及,那就是电容去耦半径问题。如果电容摆放离芯片过远,超出了它的去耦半径,电容将失去它的去耦的作用。

理解去耦半径最好的办法就是考察噪声源和电容补偿电流之间的相位关系。当芯片对电流的需求发生变化时,会在电源平面的一个很小的局部区域内产生电压扰动,电容要补偿这一电流(或电压),就必须先感知到这个电压扰动。信号在介质中传播需要一定的时间,因此从发生局部电压扰动到电容感知到这一扰动之间有一个时间延迟。同样,电容的补偿电流到达扰动区也需要一个延迟。因此必然造成噪声源和电容补偿电流之间的相位上的不一致。

特定的电容,对与它自谐振频率相同的噪声补偿效果最好,我们以这个频率来衡量这种相位关系。设自谐振频率为f,对应波长为1212.gif,补偿电流表达式可写为:

3.gif

其中,A是电流幅度,R为需要补偿的区域到电容的距离,C为信号传播速度。

当扰动区到电容的距离达到4.gif时,补偿电流的相位为5.gif,和噪声源相位刚好差180度,即完全反相。此时补偿电流不再起作用,去耦作用失效,补偿的能量无法及时送达。为了能有效传递补偿能量,应使噪声源和补偿电流的相位差尽可能的小,最好是同相位的。距离越近,相位差越小,补偿能量传递越多,如果距离为0,则补偿能量百分之百传递到扰动区。这就要求噪声源距离电容尽可能的近,要远小于6.gif。实际应用中,这一距离最好控制在7.gif之间,这是一个经验数据。

例如:0.001uF陶瓷电容,如果安装到电路板上后总的寄生电感为1.6nH,那么其安装后的谐振频率为125.8MHz,谐振周期为7.95ps。假设信号在电路板上的传播速度为166ps/inch,则波长为47.9英寸。电容去耦半径为47.9/50=0.958英寸,大约等于2.4厘米。[p]

本例中的电容只能对它周围2.4厘米范围内的电源噪声进行补偿,即它的去耦半径2.4厘米。不同的电容,谐振频率不同,去耦半径也不同。对于大电容,因为其谐振频率很低,对应的波长非常长,因而去耦半径很大,这也是为什么我们不太关注大电容在电路板上放置位置的原因。对于小电容,因去耦半径很小,应尽可能的靠近需要去耦的芯片,这正是大多数资料上都会反复强调的,小电容要尽可能近的靠近芯片放置。


电源完整性设计(16)电容的安装方法

电容的摆放

对于电容的安装,首先要提到的就是安装距离。容值最小的电容,有最高的谐振频率,去耦半径最小,因此放在最靠近芯片的位置。容值稍大些的可以距离稍远,最外层放置容值最大的。但是,所有对该芯片去耦的电容都尽量靠近芯片。下面的图14就是一个摆放位置的例子。本例中的电容等级大致遵循10倍等级关系。

8.gif

图14 电容摆放位置示例

还有一点要注意,在放置时,最好均匀分布在芯片的四周,对每一个容值等级都要这样。通常芯片在设计的时候就考虑到了电源和地引脚的排列位置,一般都是均匀分布在芯片的四个边上的。因此,电压扰动在芯片的四周都存在,去耦也必须对整个芯片所在区域均匀去耦。如果把上图中的680pF电容都放在芯片的上部,由于存在去耦半径问题,那么就不能对芯片下部的电压扰动很好的去耦。


电容的安装

在安装电容时,要从焊盘拉出一小段引出线,然后通过过孔和电源平面连接,接地端也是同样。这样流经电容的电流回路为:电源平面->过孔->引出线->焊盘->电容->焊盘->引出线->过孔->地平面,图15直观的显示了电流的回流路径。

9.gif

图15 流经电容的电流回路

放置过孔的基本原则就是让这一环路面积最小,进而使总的寄生电感最小。图16显示了几种过孔放置方法。

10.gif

图16 高频电容过孔放置方法

第一种方法从焊盘引出很长的引出线然后连接过孔,这会引入很大的寄生电感,一定要避免这样做,这时最糟糕的安装方式。

第二种方法在焊盘的两个端点紧邻焊盘打孔,比第一种方法路面积小得多,寄生电感也较小,可以接受。

第三种在焊盘侧面打孔,进一步减小了回路面积,寄生电感比第二种更小,是比较好的方法。

第四种在焊盘两侧都打孔,和第三种方法相比,相当于电容每一端都是通过过孔的并联接入电源平面和地平面,比第三种寄生电感更小,只要空间允许,尽量用这种方法。[p]

最后一种方法在焊盘上直接打孔,寄生电感最小,但是焊接是可能会出现问题,是否使用要看加工能力和方式。

推荐使用第三种和第四种方法。

需要强调一点:有些工程师为了节省空间,有时让多个电容使用公共过孔。任何情况下都不要这样做。最好想办法优化电容组合的设计,减少电容数量。

由于印制线越宽,电感越小,从焊盘到过孔的引出线尽量加宽,如果可能,尽量和焊盘宽度相同。这样即使是0402封装的电容,你也可以使用20mil宽的引出线。引出线和过孔安装如图17所示,注意图中的各种尺寸。

11.gif

图17 推荐的高频电容过孔放置方法

对于大尺寸的电容,比如板级滤波所用的钽电容,推荐用图18中的安装方法。

12.gif

图18 低频大电容过孔放置

电源完整性设计(17)结束语

电源系统去耦设计要把引脚去耦和电源平面去耦结合使用已达到最优设计。时钟、PLL、DLL等去耦设计要使用引脚去耦,必要时还要加滤波网络,模拟电源部分还要使用磁珠等进行滤波。针对具体应用选择退耦电容的方法也很流行,如在电路板上发现某个频率的干扰较大,就要专门针对这一频率选择合适的电容,改进系统设计。总之,电源系统的设计和具体应用密切相关,不存在放之四海皆准的具体方案。关键是掌握基本的设计方法,具体情况具体分析,才能很好的解决电源去耦问题。

射频工程师养成培训教程套装,助您快速成为一名优秀射频工程师...

天线设计工程师培训课程套装,资深专家授课,让天线设计不再难...

上一篇:智能通信高频开关电源系统技术知识
下一篇:集成电源模块的电子技术

射频和天线工程师培训课程详情>>

  网站地图