- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
基于Vicor模块的通信开关电源设计[ ]
基本技术指标是输入电压220VAC±20%、输出DC +48V/20A、输出电压调整范围+49~+59V、效率≥80%、电压稳定度<0.5%、负载稳定度<1.5%、纹波电压Vp-p<0.5%,具有输出过压、限流、过温和短路保护。
工作原理
开关电源原理框图如图1所示。
图1 开关电源原理框图
交流输入
输入220V交流电压后,经过压敏电阻、EMI滤波、桥式整流器,瞬态电压抑制器转变成310V左右的直流电压输入功率因素校正电路。EMI滤波选用了Vicor公司配套的电源滤波器,可以有效降低电网的噪声干扰。
功率因素校正电路主要由Vicor公司的谐波衰减模块VI-HAMD、VI-BAMD以及高压滤波电路组成,其中VI-HAMD是谐波衰减 驱动 器,VI-BAMD是谐波衰减倍增器。由于谐波衰减模块内部具有功率因素校正电路,因此可以把功率因数提高到0.99,同时将输入的+310V电压提升到+375V,供给后级DC-DC变换电路和辅助电源。
高压滤波电路是由高压电解电容组成,它主要是将直流高压进行平滑滤波为后级变换储能。前级的压敏电阻器同瞬态电压抑制器一起构成了浪涌电压抑制电路,使模块所承受的交流输入浪涌电压不超过410V,确保模块不会被浪涌电压的冲击所损坏。
DC-DC变换及输出滤波
该部分主要是将+375V的直流高压转变为+48V的直流输出电压。DC-DC变换采用Vicor公司的V375A48C600AL模块两个并联使用来实现。
输出滤波是由高频 电感 和电容组成,它可以对直流脉动电压进行滤波,使之变成低杂音、低电磁干扰、高质量的直流输出。
辅助电源
将+375V电压转变为+5V的直流电压,给保护电路供电。
保护电路
主要实现输出过流保护、输出过压保护以及电源工作状态的指示。谐波衰减模块和DC-DC转换器自身带有部分保护功能,其中谐波衰减模块内部就具有输入浪涌电流限制、输入瞬变过电压保护、过热保护、输出过压保护、短路保护等功能,还能在工作不正常时控制后级DC-DC转换器的关断;而DC-DC转换器内部也具有输入、输出过压保护,输入、输出欠压保护,输出过流保护,过热保护等功能。这些完备的保护功能尽可能的保证了模块的安全,同时也增强了开关电源的安全性。
尽管模块本身的保护功能很全面,但是有些保护的范围 [p] 并不适合系统的技术要求。例如我们选择模块功率时,要考虑到降额使用,因此模块自身设置的过流保护点就会超出技术要求,若使用模块本身的过流保护功能,很可能会发生后级电路已损坏而电源模块过流保护还未启动的现象。因此根据所需要的具体指标,专门设计了过流保护电路、过压保护电路等。同时为了迅速判断电源的工作状态以及故障可能发生的部位,我们设置了过压、欠压、过流、电源正常的指示灯。
关键技术
恒流特性
Vicor公司的DC-DC转换器有一个次级控制引脚SC,这个控制端用于调节输出端+Sense和-Sense之间的受调电压,将电流源加到SC引脚,模块的输出电压就可以实现动态调整。
图2为本开关电源原理图,图中N1和N3为运算放大器CA3140,N2为电压基准TL431,V13为晶体管BC107,它们共同组成了电流源。CD1和CD2为分流电阻,通过分流电阻对输出电流采样,将电流值转换为电压值,由于该电压值很低,所以须经过差分放大器N3进行放大,将这个放大的电压值送入运放N1的同相端,和由电压基准N2分压得到的基准电压进行比较,通过运放N1的输出来控制晶体管V13的工作状态,从而控制SC引脚。正常工作时,运放N1输出低电平,晶体管V13处于截止状态;当输出电流大于额定值达到恒流点时,运放N1输出高电平,晶体管V13处于饱和状态致使输出电压下降,保护电源,从而达到输出电流恒定。同时运放N1输出的高电平被送至比较器N6的3脚,与基准电压比较后输出高电平,点亮过流指示灯。在这里,N4、N5、N6型号相同,选用的是自带基准电压的比较器LTC1440CN8,电位器RP3用于调节恒流点的值。
过压保护
如图2所示,输出采样电压经过电阻R25,电位器RP6接入比较器N5的3脚,将基准电压接入比较器N5的4脚。当输出电压高于最大输出电压时,比较器N5的8脚输出高电平,使得光耦N8的4脚和6脚导通,将功率模块的PC端接地,关闭电源输出,同时点亮过压指示灯。二极管V14用于在过压状态时将电源永久关闭,否则,电源会处于“打嗝”状态。
图2 开关电源原理图
欠压指示
输出采样电压经过电阻R24,电位器RP5接入比较器N4的4脚,基准电压接入比较器N4的3脚。当输出电压低于最小输出电压时,比较器N4的8脚输出高电平点亮欠压指示灯。在这里,电源处于欠压状态时仅通过指示灯来指示。
电磁兼容
电路传输线间的传导干扰、 开关 噪声、辐射噪声、负载的容感性等等问题都会产生电磁干扰。就干扰本身来说,它必备三个条件:干扰源、耦合路径和敏感源。在电磁兼容设计过程中,主要从减小干扰源、阻断干扰路径和加强电源自身抗干扰能力这三个方面着手。
在结构方面,我们将电源机箱设计为一个相对密封的屏蔽腔体。腔体底 [p] 部设计为独立风道,风道后部安装轴流风机,风道、轴流风机与屏蔽腔体隔离,这样既增强了散热又加强了开关电源的屏蔽效果。
在电路方面采取了如下几项措施:
1、为了避免传导干扰,在输入端选用了Vicor公司配套的EMI滤波器,并且使交流输入端和滤波器端子尽可能靠近,连线尽量短,滤波器的外壳和机壳紧密相连,良好接地,这样避免了外部的干扰通过输入线传导至电源内部。
2、在PCB布线上:通过大面积铺设地线网,减小地线电感来降低噪声;尽量缩短信号线、电源线和功率线,电流环路也尽可能小,从而减小印制板对干扰信号的耦合;所有芯片的电源管脚都接有滤波电容,并使芯片的供电线路尽可能短;输入电路、高频电路、输出电路分别单独接地,然后再连接到公共地上,也就是“一点接地”原则。
3、电源模块本身使用了高频ZCS开关技术,ZCS大大降低了变换过程中开关管的导通和关断时的dv/dt与di/dt,使模块本身的开关噪声和辐射噪声干扰变的很小;同时模块本身的抗干扰能力就比较强,因此在作为干扰源和敏感源方面,电源模块都展现出了较好的电磁屏蔽功能。另外,在模块和机壳之间使用Y电容来减小共模电流,并在输出端采用共模电感,加入LC滤波器。
结论
本电源完全满足技术要求并且顺利通过了电磁兼容的传导和辐射 测试 。利用Vicor模块设计的 通信 基础开关电源和分立元件的设计相比,电源模块集成度高、体积小、功率密度大,从而可靠性、稳定度相对较高,并且安装方便,故障判断和维修也相对容易。
射频工程师养成培训教程套装,助您快速成为一名优秀射频工程师...
天线设计工程师培训课程套装,资深专家授课,让天线设计不再难...
上一篇:LED驱动器常见问题探讨
下一篇:电源系统的B类保护和C类保护