- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
太阳能电源低压钠灯智能控制器工作原理
1 系统结构
独立型太阳能光伏系统主要由太阳能电池方阵、蓄电池组、控制器和负载组成。其组成框图如图l所示。
分析太阳能综合利用系统的构成可知,负载以太阳光为能源,白天太阳能电池组件/方阵采集电能,铅酸蓄电池储存电能 [p] ,通过控制器的合理控制,晚上为负载提供电能,使用时间和工作模式可以灵活设置。开发了一套小型光伏系统的低压钠灯太阳能电源控制器,其中,蓄电池为24 V,负载是36 W的低压钠灯,单路负载输出。
2 系统硬件设计
该智能控制器装置硬件部分具有3个接口:一个用于同太阳能电池方阵接口,一个用于同蓄电池接口和一个用于同低压钠灯负载接口。控制器整体结构设计框图如图2所示。虚框内为控制器部分。
2.1 P87LPC767单片机
系统控制选用PHILIPS半导体公司的P87LPC767单片机实现,其工作在100 kHz~4 MHz、电源电压为3.3 V时,其功耗仅为0.044~1.7 mA,适合蓄电池供电系统;它提供高速和低速的晶振和RC振荡 [p] 方式,可由编程选择,且有较宽的操作电压范围;可编程I/O口线输出模式选择,可选择施密特触发输入,LED驱动输出;内含看门狗定时器和I2C总线;其内部的2个模拟比较器可组成8位A/D转换器;同时具有上电复位检测和欠压复位检测功能;保证I/O口驱动电流达到20 mA。P87LPC767采用80C51加速处理器结构,指令执行速度是标准80C5l CPU的2倍。
本系统以P87LPC767单片机为核心,外围电路主要由电压采集电路、负载输出控制与检测电路、LED显示电路、模式选择电路以及可使系统加入附加功能的E2PROM芯片等部分组成。P87LPC767及其外围电路如图3所示。表1是结合硬件电路设计单片机P87LPC767各引脚功能描述。
2.2 蓄电池充放电电路
基于光伏发电的特殊性,需设计性能良好的充放电控制电路。为了延长蓄电池的使用寿命,必须对其充放电条件加以限制,防止蓄电池过充电和深度放电。该充放电电路相当于一个电压采集与电池管理模块。
当白天有阳光时,单片机分别检测太阳能电池方阵和蓄电池的电压值,控制蓄电池充电电路导通 开关 MOSFET管VQ9(图3)的导通/关断状态。当单片机检测到 PV +电平高于BAT+电平时,开关器件VQ9导通,太阳能电池方阵向蓄电池用直充方式充电; [p] 当蓄电池被充至过压时,开关器件Q9关断,太阳能电池方阵向蓄电池用小电流充电(浮充),这样能起到“过充电保护”作用。
当夜晚或阴天阳光不足时,继电器导通,蓄电池放电,保证负载不停电。本系统设计的继电器RELAYl为蓄电池放电开关,RELAYl导通/关断的控制信号由单片机的I/O口输出。本系统的负载为低压钠灯,用于道路照明,因此应具备光控功能,即有太阳光时,RELAYl关断;当夜晚或阴天阳光不足时,RELAYl导通,蓄电池放电,路灯照明。从保护蓄电池的角度出发,当需要向负载供电而蓄电池电压却小于“过放电压”,RELAYl也关断,进行“过放电保护”,避免电池放空,损坏蓄电池;当太阳能电池方阵重新供电且只有当蓄电池电压重新升到浮充电压,需要为负载供电时RELAYl才重新导通,接通负载回路。
2.3 低压[p] 灯的DC/AC低频电子镇流器系统电路
电子镇流器连接在电源和一只或若干只气体放电灯之间,并将气体放电灯的工作电流限制在规定值内,用于对负载进行输出控制与检测。低压钠灯属于气体放电灯,由于气体放电灯具有负阻工作特性,所以要使其正常工作,应配以镇流器等控制装置。这些相关的控制装置应完成以下控制功能:1)限制和稳定气体放电灯的工作电流;2)在蓄电池端电压允许变化范围内应能确保灯电压、灯电流和灯 功率 稳定,使灯正常工作。3)提供气体放电灯所需的点火电压。4)在气体放电灯负载点火工作之前应提供所需的灯电极预热功能。
目前对太阳能电源控制器、低压钠灯及其配套电子镇流器已有很多研究,[p] 在实际工程应用中发现,由于上述3种设备或产品都是独立开发的,在工作中匹配性差。有的低压钠灯启动不稳定,有的甚至造成损坏,在很大程度上限制了低压钠灯的应用。因此建议可把该低压钠灯的DC/AC低频电子镇流器系统电路模块纳入本控制器系统,设计成一个太阳能低压钠灯照明系统智能控制器、镇流器一体机。
2.4 LED显示电路
此控制器采用了一个双色LED发光二极管作为系统状态指示灯,该双色LED发光二极管 显示 非常直观,取代了以往多个指示灯。单片机通过检测引脚17(ADl,即BAT+电压)的值与设定值相比较,控制引脚2(P1.7)和引脚3(P1.6)的输出电平,决定系统状态指示灯的颜色和状态。状态指示灯显示的 [p] 状态如表2所示。
2.5 控制器工作模式选择电路
本控制器预设了8种工作模式供用户选择(见表3),用户只需拨动拨码开关J1。单片机将自动检测个人用户选择的控制器模式,根据程序流程,分别实现不同模式下的功能。
3 系统软件设计
该设计方案的软件程序包括:主程序、定时中断程序、A/D转换子程序、外部中断子程序、充放电管理子程序、负载管理子程序、LED显示子程序等。图4为本系统软件结构设计框图。以“调试模式”为例,本系统的软件设计程序流程如图5所示。
4 实验结果
根据以上设计思路,试制一台样机,由2个12 V 7 AH阀控式密封铅酸蓄电池、36 W低压钠灯和由直流电源模拟代替的80 Wp光伏阵列系统组成的实验平台对样机的各项性能指标进行实验研究。图6是在稳定阶段的低压钠灯示波器的波形。结果表明,本系统运行稳定、可靠。
5 结论
本系统经过实验和调试,实现了预期的功能,有效、合理地完成了系统状态的管理和能量流的实时控制。采用微处理器实现太阳能控制器的充放电控制,其各项性能指标明显优于常规控制器,并可针对不同蓄电池设定参数和 [p]
进行温度补偿,大大扩展了其使用功能。
射频工程师养成培训教程套装,助您快速成为一名优秀射频工程师...
天线设计工程师培训课程套装,资深专家授课,让天线设计不再难...
上一篇:单端反激变换器的电路
和波形
下一篇:利用模拟开关实现T1/E1/J1的N+1冗余