• 易迪拓培训,专注于微波、射频、天线设计工程师的培养
首页 > 电子设计 > 电源技术 > 电源技术 > 硬开关功率转换器的电能回收设计

硬开关功率转换器的电能回收设计

录入:edatop.com    点击:
摘要

本文论述一个新颖的简单的适用于各种类型硬开关功率转换器的电能回收电路,这个电路只需使用几个意法半导体的元器件:一个微型线圈、两个耦合辅助线圈和两个优化的PN二极管。而且,这个电路完全兼容任何一种PWM控制器。我们在这里论述这个成本最低且能效更高的独特的电能回收电路的基本设计方法。为了突出这个拓扑的好处,我们在一个90-264 VRMS的通用系列450W硬开关式功率因数校正器内,把这个电路与8 A 碳化硅肖特基二极管进行了比较;为了更全面客观的比较,我们使用了几个开关频率(72 kHz、140 kHz和200 kHz)。比较结果显示,新电路的能效高于碳化硅肖特基二极管。此外,这个包括专用二极管和小线圈在内的整流级具有很高的成本效益,符合大众市场的预期。

1.前言

最大限度地降低功率损耗,在不增加成本的前提下提高功率密度,是现代高能效开关电源面临的主要挑战。开关电源的设计目标是降低功率的通态损耗和开关损耗。

不显著影响成本和功率密度而达到优化功率通态损耗的目的是很难的,因为实现这个目标需要更多的材料,例如,晶片和铜线面积。与通态损耗不同,降低功率开关损耗而不大幅提高电源成本比较容易做到。降低功率开关损耗有两个主要方法:改进半导体技术的动态特性或电路拓扑。

采用碳化硅和氮化镓等材料的新型二极管可大幅降低开关损耗。然而,这些新产品的能效成本比并不适用于大众市场,如台式机电脑和服务器电源。

本文重点论述的专利电路[1]采用软开关法,能效/成本/功率密度/EMI比优于碳化硅高压肖特基二极管,因此符合市场预期。

1.1.二极管导通损耗

从200 W到2000W之间的大众市场电源通常需要一个连续导通(CCM)的功率因数校正器(PFC)。要想提高功率转换器的功率密度,就应该提高开关频率。然而,功率因数校正器的主要开关损耗是功率开关/整流器换向单元的损耗,提高开关频率意味着更高的损耗。因为PN二极管产生的电压电流交叉区损耗和反向恢复损耗[2] ,如图1所示,所以,主要功率损耗发生在功率开关的导通阶段。

硬开关功率转换器的电能回收设计
图1:导通损耗与二极管类型和电流软开关法对比

为降低PN二极管整流器引起的功率损耗,最近多家半导体厂家推出了采用碳化硅和氮化镓技术的高压肖特基二极管。尽管半导体厂商付出努力,但是仍然不能消除在晶体管导通过程中发生的电流电压交叉区,如图1.2所示的。与PN二极管不同,碳化硅二极管能够提高dI/dt斜率,而二极管的反向恢复电流没有提高。因此,开关时间变小,导通功率损耗也随着变小,但是不能彻底消失。今天,为遵守EMI电磁干扰防护标准,在功率因数校正器设计内,碳化硅二极管导通dI/dt最大值约1000 A/μs,而传统的PN二极管的dI/dt值为 300 A/μs。

详文请见pdf文挡:硬开关功率转换器的电能回收设计

更多技术文章下载

射频工程师养成培训教程套装,助您快速成为一名优秀射频工程师...

天线设计工程师培训课程套装,资深专家授课,让天线设计不再难...

上一篇:利用16路恒流LED驱动IC实现护栏灯解决方案
下一篇:陶显芳开关电源原理与设计系列连载七十四

射频和天线工程师培训课程详情>>

  网站地图