• 易迪拓培训,专注于微波、射频、天线设计工程师的培养
首页 > 电子设计 > 电源技术 > 电源技术 > 电源设计小贴士之可替代集成MOSFET驱动器的方案

电源设计小贴士之可替代集成MOSFET驱动器的方案

录入:edatop.com    点击:
在之前的电源设计小贴士中,我们讨论了MOSFET栅极驱动电路中使用的发射器跟踪器,并且了解到利用小型SOT-23晶体管便可以实现2A范围的驱动电流。在本设计小贴士中,我们来了解一下自驱动同整流器并探讨何时需要分立驱动器来保护同步整流器栅极免受过高电压带来的损坏。理想情况下,您可以利用电源变压器直接驱动同步整流器,但是由于宽泛的输入电压变量,变压器电压会变得很高以至于可能会损坏同步整流器。

图1显示的是用于控制同步反向拓扑中Q2传导的分立器件。该电路可以让您控制开启栅极电流并保护整流器栅极免受高反向电压的损坏。该电路可以用变压器输出端的负电压进行驱动。12V输入与5V输出相比负电压值很大,从而引起Q1传导并短路电源FET Q2上的栅-源电压,迅速将其关闭。由于基极电流流经R2,因此在加速电容C1上就有了一个负电压。在此期间,一次侧FET将会发生传导并在变压器磁化电感中存储能量。一次侧FET关闭时,变压器输出电压在正电压范围摆动。Q2栅-源通过D1和R1被迅速前向偏置。C1放电时,D2对Q1 基极-发射极连接进行保护。在一次侧FET再次开启之前,该电路会一直保持这种状态。正如同步降压转换器那样,输出电流会真正地对输出电容进行放电。开启一次侧FET会衰减变压器二次侧上的电压并去除Q2的正驱动。这种转换会导致明显的贯通叠加一次侧FET和Q2传导次数。为了最小化该次数,当一次侧和二次侧FET均开启时,Q1将会尽快地短路同步整流器上的栅-源。

电源设计小贴士之可替代集成MOSFET驱动器的方案
图1:Q1快速关闭同步反向FET Q2

图2显示的是用于控制同步正向转换器中Q1和Q4传导的分立驱动器。在此特殊的设计中,输入电压很宽泛。这就是说两个FET的栅极可能会有超过其额定电压的情况,因此就需要一个钳位电路。当变压器输出电压为负数,该电路就会开启Q4。二极管D2和D4将正驱动电压限制在4.5V左右。D1和D3将FET关闭, 该FET由变压器和电感中的电流进行驱动。Q1和Q4 将反向栅极电压钳位到接地。在此设计中,FET具有相当小栅极电感,因此转换非常迅速。较大的FET可能需要实施一个PNP晶体管对变压器绕组进行栅极电容去耦并提升开关速度。为栅极驱动转换器Q2和Q3选择合适的封装至关重要,因为这些封装会消耗转换器中大量的电能(这是因为在FET栅极电容放电期间这些封装会起到线性稳压器的作用)。此外,由于更高的输出电压,R1和R2中的功耗可能也会很高。

电源设计小贴士之可替代集成MOSFET驱动器的方案
图2:D2和D4限制了该同步正向驱动器中正栅极电压

总之,许多具有同步整流器的电源都可以使用变压器的绕组电压来驱动同步整流器的栅极。宽范围输入或高输出电压需要调节电路来保护栅极。在图1所示的同步反向结构中,我们向您介绍了如何在保持快速的开关转换的同时控制同步整流器栅极上的反向电压。与之相类似在图 2 的同步正向结构中,我们向您介绍了如何限制同步整流器栅极上的正驱动电压。

下次我们将讨论高di/dt负载瞬态负载以及其在设计和测试电源时的意义,敬请期待。

作者:Robert Kollman

德州仪器 (TI)

射频工程师养成培训教程套装,助您快速成为一名优秀射频工程师...

天线设计工程师培训课程套装,资深专家授课,让天线设计不再难...

上一篇:使用IT6900A直流电源完成多种测试的案例分析
下一篇:LDO基本噪声及降至最小的途径

射频和天线工程师培训课程详情>>

  网站地图