• 易迪拓培训,专注于微波、射频、天线设计工程师的培养
首页 > 电子设计 > 电源技术 > 电源技术 > 陶显芳开关电源原理与设计系列连载五十八

陶显芳开关电源原理与设计系列连载五十八

录入:edatop.com    点击:
当铁芯或铁芯片表面磁场强度的最大值Hm高于磁场强度的平均值Ha时,其差值为:

电源系统

该数值和磁场强度增量 H之比等于:μaδ2/12ρcτ ,它表征涡流的影响,并与平均导磁率μa及铁芯片厚度δ的平方成正比,与铁芯片材料的电阻率ρc及脉冲宽度τ成反比。

根据(2-62)式可知,铁芯或铁芯片表面的磁场由两个部分组成:

(1)平均磁场,它随时间线性增长,由线圈中固定的电动势感应所产生;

(2)常数部分,它不随时间变化,由补偿涡流的产生的去磁场所形成。

对应铁芯片表面的两部分磁场,我们可以把它们分别看成是由 和 两部分电流产生的。根据安培环路定律:磁场强度矢量沿任意闭合路径一周的线积分,等于穿过闭合路径所包围面积的电流代数和。以及磁路的克希霍夫定律:在磁场回路中,任一绕行方向上磁通势NI(N为线圈匝数,I为电流强度)的代数和恒等于磁压降 Hili(Hi 为磁场强度, li为磁路中磁场强度为Hi的平均长度)的代数和。即:

Hm=N*i/l =N(iμ+ib)/l (2-64)

(2-64)式中, l为磁回路的平均长度; i =iμ +ib , iμ为变压器线圈中的励磁电流; ib为因涡流影响使流过变压器线圈电流增加的电流。

根据(2-62)式和(2-7)式求得:

电源系统

图2-20-a就是根据(2-67)、(2-68)式画出的开关变压器受涡流影响时,输入端磁化过程的等效电路图。

电源系统

图2-20-a中,Rb为涡流损耗等效电阻,N为变压器初级线圈。由此可以看处,由于受涡流损耗的影响,变压器铁芯被磁化时,相当于一个涡流损耗等效电阻Rb与变压器初级线圈N并联。

图2-20-b是更形象地把涡流损耗等效成一个变压器次级线圈N2给损耗电阻Rb2提供能量输出,流过变压器次级线圈N2的电流 ,可以通过电磁感应在变压器初级线圈N1中产生电流ib1 。

[p]

根据(2-66)式和图2-20,可求得变压器的涡流损耗为:

电源系统

(2-69)式中,Sl=Vc 为变压器铁芯的体积,S为变压器铁芯的面积, l为磁回路的平均长度, δ为铁芯片的厚度,N为变压器初级线圈匝数, ρc为铁芯片的电阻率,τ为脉冲宽度,B为磁通密度增量。

由此,我们可以看出:变压器铁芯的涡流损耗,与磁感强度增量和铁芯的体积成正比,与铁芯片厚度的平方成正比,与电阻率及脉冲宽度的平方成反比。

值得注意的是,上面各式中代表面积S的属性,它既可以代表某一铁芯片的截面积,也可以代表变压器铁芯的总面积,当S变压器铁芯的总面积时,相当于上面结果是很多单个铁芯片涡流损耗的代数和。同理,以上各式中代表铁芯片厚度的δ ,既可以代表某一铁芯片的厚度,也可以代表变压器铁芯的总厚度,因为铁芯片的厚度δ 的取值是任意的。

但是,在变压器铁芯总面积相等的情况下,由一块铁芯片或多块相同厚度的铁芯片组成的变压器铁芯,其涡流损耗是不相同的。例如,在变压器铁芯总面积相等的情况下,由一块铁芯片组成的变压器铁芯的涡流损耗,是由两块铁芯片组成的变压器铁芯涡流损耗的4倍;如果两者铁芯片的数目的比值为3倍,那么涡流损耗的比值就是9倍。由此可知,涡流损耗是按n2递减的,其中n为变压器铁芯芯片的个数。

实际用(2-69)式来计算开关变压器的涡流损耗还是有一定局限性的,因为,在对(2-69)式的推导过程中并没有考虑两块铁芯片之间涡流磁场的互相影响,从原理上来说变压器铁芯中间的铁芯片与边缘的铁芯片之间涡流磁场互相影响程度是不一样的;并且铁芯片与铁芯片之间不可能完全绝缘。

另外,目前大多数开关变压器使用的铁芯材料基本上都是铁氧体导磁材料,这些以铁氧体为材料的变压器铁芯是按陶瓷的生产工艺,先把铁磁混合材料冲压成型,然后加高温烧结而成,因此它是一个整体,或为了安装方便把它分成两个部分组合而成。

如果把以铁氧体变压器铁芯的形状看成是一个圆柱体,那么(2-50)、(2-51)的麦克斯韦一维方程式就可以看成是电磁场能量是由圆柱体中心向周围传播和散发的;这样圆柱形变压器铁芯就相当于由不同内外径,厚度变量为δ 的多个圆筒体组合而成。或者,把整个铁氧体变压器铁芯,看成为由单个厚度为d/2的圆柱体组成,这里d为圆柱体的直径。

图2-21就是用来求铁氧体圆柱体变压器铁芯内某截面磁场分布的原理图,图中虚线表示交变磁场在变压器铁芯内部感应产生涡流。我们用同样的方法,从(2-59)开始对表示磁场分布的(2-58)式进行积分求平均值,然后求出积分常数c2,即可以求得圆柱体铁芯内的磁场分布式:

电源系统

[p]

(2-70)式中, H为变压器铁芯片中磁场强度增量,d为圆柱体铁芯的直径, μa为变压器铁芯的平均导磁率, ρc为铁芯片的电阻率,τ为脉冲宽度。

电源系统

上面(2-70)式是表示圆柱体铁芯截面沿x轴方向的磁场分布图。其实磁场分布在整个铁芯截面的xy平面内都是以中心对称的。这样圆柱形变压器铁芯中的磁场强度在xy平面的分布函数H(x,y)曲面,就相当于把图2-19-a的函数曲线,以中心为圆心旋转一周而得到的新图形。

图2-22-a和图2-22-b是圆柱形变压器铁芯中磁场强度按水平方向分布的函数H(x,y)曲面图和按时间分布的函数H(t)曲线图。

根据上面分析,以同样方法我们可以求出圆柱体变压器铁芯的涡流损耗为:

电源系统

(2-71)式中, 为变压器铁芯的体积,S为变压器铁芯的面积, l为磁回路的平均长度,d为圆柱体铁芯的直径, ρc为铁芯片的电阻率,τ为脉冲宽度,B为磁通密度增量。

电源系统

由此我们对园柱体变压器铁芯同样可以得出结论:圆柱体变压器铁芯的涡流损耗,与磁感强度增量和铁芯的体积成正比,与铁芯直径的平方成正比,与电阻率及脉冲宽度的平方成反比。

或者,圆柱体变压器铁芯的涡流损耗,与磁感强度增量以及铁芯直径的四次方成正比,与电阻率及脉冲宽度的平方成反比。

(2-71)式与(2-69)式在原理上没有本质上的区别,因此,图2-20的等效电路对于(2-71)式同样有效。

上面对涡流工作原理的分析,虽然看起来并不是很复杂,但要精确计算涡流损耗的能量是非常困难的。因为很难精确测量出变压器铁芯的损耗电阻,特别是,目前大多数开关变压器使用的铁芯材料,基本上都是铁氧体导磁材料;这些铁氧体变压器铁芯是由多种铁磁金属材料与非金属材料混合在一起,然后按陶瓷的生产工艺,把铁磁混合材料冲压成型,最后加高温烧结而成的。

[p]

由于铁氧体属于金属氧化物,大部分金属氧化物都具有半导体材料的共同性质,就是电阻率会随温度变化,并且变化率很大。热敏电阻就是根据这些性质制造出来的,温度每升高一倍,电阻率就会下降(或上升)好几倍,甚至几百倍。大多数热敏电阻的材料也属于金属氧化物,因此,铁氧体也具有热敏电阻的性质。

铁氧体变压器铁芯在常温下,虽然电阻率很大,但当温度升高时,电阻率会急速下降;相当于图2-20-a中的Rb涡流等效电阻变小,流过Rb的电流增加;当温度升高到某个极限值时,变压器初级线圈的有效电感量几乎下降到0,相当于导磁率也下降到0,或变压器初、次级线圈被短路,此时的温度称为居里温度,用Tc表示。因此,铁氧体的电阻率和导磁率都是不稳定的,铁氧体开关变压器的工作温度不能很高,一般不要超过120度 。

图2-23是日本TDK公司高导磁率材料H5C4系列磁芯初始导磁率μi 随温度变化的曲线图。

电源系统

顺便说明,图2-23中的初始导磁率μi 一般是用磁环作为样品测试得到的,测试信号的频率一般比较低,仅为10kHz,并且测试时一般都选用最大导磁率作为结果;因此,实际应用中的开关变压器磁芯的导磁率并没有这么高。

射频工程师养成培训教程套装,助您快速成为一名优秀射频工程师...

天线设计工程师培训课程套装,资深专家授课,让天线设计不再难...

上一篇:高性能电流模式PWM控制器满足绿色电源设计需求
下一篇:TI工程师教您掌控自己的电源设计

射频和天线工程师培训课程详情>>

  网站地图