- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
利用16位DAC实现20位分辨率的设计
引言
随着DSP芯片处理数据能力的提高,数字信号处理系统的精度要求也越来越高。考虑到系统要求的是相对精度,而非绝对精度。为了获得最佳相对精度,本文提出一种创新的解决方案,即在精密DAC后端使用可编程增益放大器(PGA)。
系统框架结构
该系统主要包括以下几个部分:DSP、DAC、DAC后端低通滤波电路以及两个数字可编程运放PGA205,如图1所示。系统中DSP采用了TI公司的TMS320VC5402,它有一组程序总线和三组数据总线,高度并行性的算术逻辑单元ALU、专用硬件逻辑片内存储器、增强型HPI口和高达100MHz的CPU频率,可以在一个周期里完成两个读和一个写操作。
图1 D/A采用了ADI公司的一种16位、低功耗数模转换器AD7846,实现了高速同步数模转换。可编程增益放大器采用的是美国BB公司的具有低增益误差的PGA205,它可采用4.5~18V的电源工作,通过与CMOS与TTL兼容的输入端来设定增益,并能提供快速的稳定时间。 硬件实现 TMS320VC5402和AD7846是通过VC5402的并行I/O接口来实现数据交换,通过地址线来对AD7846的四个数字逻辑进行控制的。 将CS和R/W均置为低电平时,开始向该DAC写数,经过一段延时,将LDAC置为高电平,CLR置为低电平,DAC进行数模转换。最后,将R/W和CLR均置为低电平,即将该DAC锁存器清零。当然,也可以通过CPLD来对其进行控制。 图2是DSP和AD7846接口电路,图中省略了控制信号的电平转换电路部分以及DAC的参考电压供电电路(AD7846由AD1580提供1.25V的单极性参考电压,AD7846最终输出单极性峰峰值为1.25V的正弦波)。DAC后端低通滤波采用10阶1kHz巴特沃斯低通滤波电路,有很好的幅频特性。 AD7846在16bit分辨率条件下为±1LSB,在此DAC后端的PGA达到稳定状态的建立时间必须足够快,以便与具有相同分辨率DAC的转换速度相匹配。此外,所选择的PGA还必须具有尽可能低的噪声,因为它决定系统的信噪比(SNR)。为了解决这些问题,本设计中的放大器采用PGA205运算放大器,它具有满足设计要求的速度、精度和快速建立时间。当DAC输出信号幅度很低时能使该系统达到20位精度,如图3所示。 后端运放电路由两个可编程增益运放PGA205串联组成。该运放电路可提供从G=1到G=16(即20、21、22、23、24)的可编程增益放大,从而达到使AD7846精度提高至20位的目的。增益输入端具体输入值详见参考文献[5]真值表。数字输入端可直接与通用的CMOS和TTL逻辑元件直接接口,逻辑输入端以接地端为基准。如果数字输入端不带锁存器,逻辑输入的改变将立即选择新的增益。逻辑输入的开关时间大约是0.5μs。
|