• 易迪拓培训,专注于微波、射频、天线设计工程师的培养
首页 > 电子设计 > 电源技术 > 电源技术 > IGBT是啥?看完这篇文章我不信你还不明白

IGBT是啥?看完这篇文章我不信你还不明白

录入:edatop.com    点击:
电的发现是人类历史的革命,由它产生的动能每天都在源源不断的释放,人对电的需求不亚于人类世界的氧气,如果没有电,人类的文明还会在黑暗中探索。

然而在电力电子里面,最重要的一个元件就是IGBT。没有IGBT就不会有高铁的便捷生活。



一说起IGBT,半导体**的人都以为不就是一个分立器件(Power Disceret)嘛,都很瞧不上眼。然而他和28nm/16nm集成电路**一样,是国家“02专项”的重点扶持项目,这玩意是现在目前功率电子器件里 技术最先进的产品,已经全面取代了传统的Power MOSFET,其应用非常广泛,小到家电、大到飞机、舰船、交通、电网等战略性产业,被称为电力电子行业里的“CPU”,长期以来,该产品(包括芯片)还 是被垄断在少数IDM手上(FairChild、Infineon、TOSHIBA),位居“十二五”期间国家16个重大技术突破专项中的第二位(简称 “02专项”)。

究竟IGBT是何方神圣 让我们一起来学习它的理论吧。

1、何为IGBT


IGBT全称为绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor),所以它是一个有MOS Gate的BJT晶体管。奇怪吧,它到底是MOSFET还是BJT 其实都不是又都是。不绕圈子了,他就是MOSFET和BJT的组合体。

我在前面讲MOSFET和BJT的时候提到过他们的优缺点,MOSFET主要是单一载流子(多子)导电,而BJT是两种载流子导电,所以BJT的驱动电流 会比MOSFET大,但是MOSFET的控制级栅极是靠场效应反型来控制的,没有额外的控制端功率损耗。所以IGBT就是利用了MOSFET和BJT的优 点组合起来的,兼有MOSFET的栅极电压控制晶体管(高输入阻抗),又利用了BJT的双载流子达到大电流(低导通压降)的目的(Voltage- Controlled Bipolar Device)。从而达到驱动功率小、饱和压降低的完美要求,广泛应用于600V以上的变流系统如交流电机、变频器、开关电源、照明电 路、牵引传动等领域。




2、传统的功率MOSFET


为了等一下便于理解IGBT,我还是先讲下Power MOSFET的结构。所谓功率MOS就是要承受大功率,换言之也就是高电压、大电流。我们结合一般的低压MOSFET来讲解如何改变结构实现高压、大电流。



1)高电压:一般的MOSFET如果Drain的高电压,很容易导致器件击穿,而一般击穿通道就是器件的另外三端(S/G/B),所以要解决高压问题必须 堵死这三端。Gate端只能靠场氧垫在Gate下面隔离与漏的距离(Field-Plate),而Bulk端的PN结击穿只能靠降低PN结两边的浓度,而 最讨厌的是到Source端,它则需要一个长长的漂移区来作为漏极串联电阻分压,使得电压都降在漂移区上就可以了。

2) 大电流:一般的MOSFET的沟道长度有Poly CD决定,而功率MOSFET的沟道是靠两次扩散的结深差来控制,所以只要process稳定就可以做的很小,而且不受光刻精度的限制。而器件的电流取决于W/L,所以如果要获得大电流,只需要提高W就可以了。

所以上面的Power MOSFET也叫作LDMOS (Lateral Double diffusion MOS)。虽然这样的器件能够实现大功率要求,可是它依然有它固有的缺点,由于它的源、栅、漏三端都在表面,所以漏极与源极需要拉的很长,太浪费芯片面 积。而且由于器件在表面则器件与器件之间如果要并联则复杂性增加而且需要隔离。所以后来发展了VDMOS(Vertical DMOS),把漏极统一放到Wafer背面去了,这样漏极和源极的漂移区长度完全可以通过背面减薄来控制,而且这样的结构更利于管子之间的并联结构实现大 功率化。但是在BCD的工艺中还是的利用LDMOS结构,为了与CMOS兼容。

再给大家讲一下VDMOS的发展及演变吧,最早的VDMOS就是直接把LDMOS的Drain放到了背面通过背面减薄、Implant、金属蒸发制作出来 的(如下图),他就是传说中的Planar VDMOS,它和传统的LDMOS比挑战在于背面工艺。但是它的好处是正面的工艺与传统CMOS工艺兼容,所以它还是有生命力的。但是这种结构的缺点在于 它沟道是横在表面的,面积利用率还是不够高。

再后来为了克服Planar DMOS带来的缺点,所以发展了VMOS和UMOS结构。他们的做法是在Wafer表面挖一个槽,把管子的沟道从原来的Planar变成了沿着槽壁的 vertical,果然是个聪明的想法。但是一个馅饼总是会搭配一个陷阱(IC**总是在不断trade-off),这样的结构天生的缺点是槽太深容易电 场集中而导致击穿,而且工艺难度和成本都很高,且槽的底部必须绝对rouding,否则很容易击穿或者产生应力的晶格缺陷。但是它的优点是晶饱数量比原来 多很多,所以可以实现更多的晶体管并联,比较适合低电压大电流的application。



还有一个经典的东西叫做CoolMOS,大家自己google学习吧。他应该算是Power MOS撑电压最高的了,可以到1000V。

3、IGBT的结构和原理


上面介绍了Power MOSFET,而IGBT其实本质上还是一个场效应晶体管,从结构上看和Power MOSFET非常接近,就在背面的漏电极增加了一个P 层,我们称之为Injection Layer (名字的由来等下说).。在上面介绍的Power MOSFET其实根本上来讲它还是传统的MOSFET,它依然是单一载流子(多子)导电,所以我们还没有发挥出它的极致性能。所以后来发展出一个新的结 构,我们如何能够在Power MOSFET导通的时候除了MOSFET自己的电子我还能从漏端注入空穴不就可以了吗 所以自然的就在漏端引入了一个P 的injection layer (这就是名字的由来),而从结构上漏端就多了一个P /N-drift的PN结,不过他是正偏的,所以它不影响导通反而增加了空穴注入效应,所以它的特性就类似BJT了有两种载流子参与导电。所以原来的 source就变成了Emitter,而Drain就变成了Collector了。



从上面结构以及右边的等效电路图看出

。。。。。

射频工程师养成培训教程套装,助您快速成为一名优秀射频工程师...

天线设计工程师培训课程套装,资深专家授课,让天线设计不再难...

上一篇:LED灯丝灯驱动电源芯片系列
下一篇:抛弃传统电源,用USB线给电脑供电

射频和天线工程师培训课程详情>>

  网站地图