- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
电容电感串联后的电容值
录入:edatop.com 点击:
简介:本文介绍了电容电感串联之后的电容的大小的问题 。
为什么把一个223电容与一个电感串联,串联后再与一个223电容并联。然后量这个并联组件的电容,得出不可理解的值:多数这样的组件的电容是44-50nF之间,但有一些是一百多nF,有一些是几百nF(拆开后量,各个电容的值仍然是22nF)。
电感电容串联后,测量电容值问题。讨论这个问题,用复数分析是最简捷最准确的。但这需要比较好的数学基础,能够从数学式中的各个量看出其物理意义。因此本帖尝试不用数学,仅用文字叙述。当然,这样只能进行定性的分析,不可能准确,同时比较冗长罗嗦,但可能物理意义比较清晰。
问题中有三个元件,稍复杂一些,我们先考虑两个元件,即一个电感和一个电容串联。
我们知道,串联电路中电流处处相同。这个相同,不仅是有效值相同,而且瞬时值也相同,也就是说,任何时刻都相同。我们又知道,电感和电容中电流与两端电压不同相,电容两端电压落后于电流90度,而电感两端电压超前于电流90度。现在电感和电容中电流相位相同,所以电感两端电压与电容两端电压相位相反,也就是说,任何时刻电容和电感上的电压是互相“抵消”的。
感抗和容抗都与频率有关。必定存在某一频率,在这个频率感抗与容抗相等。既然电感两端电压是感抗乘电流,电容两端电压是容抗乘电流,所以在这个频率下,电感两端电压恰与电容两端电压大小相等,方向相反,完全抵消。这就是串联谐振。
电感两端电压与电容两端电压完全抵消,那么电流不就是无穷大了 实际上电路中总有一些电阻,所以电流不会是无穷大,但电流很大是肯定的。此时串联电路呈纯阻性,即串联电路两端电压与电路中电流同相。
如果频率稍微降低一些怎么样 频率稍微降低一些,容抗变大一点,感抗变小一点,电容两端电压的大小稍微比电感两端电压的大小大一些,不能完全“抵消”,串联电路中电流仍比较大,注意比没有电感时要大,串联电路呈容性,当然不是纯容性,电路中还有一些电阻。从串联电路两端看,施加的电压没有变化,但电流比没有电感单纯是一个电容时大,好像是电容量变大了。可以这样考虑:感抗“抵消”了一部分容抗,使容抗减少,从串联电路两端看,就好像是电容量变大了。
应该注意到,现在容抗随频率的变化非常快,因为现在感抗与容抗互相“抵消”,频率变化一点点,“抵消”的程度就会差很多,也就是从串联电路两端看上去的电容量随频率很快变化,频率降低一点,“看上去”的电容量就会减少很多。
频率继续降低,感抗越来越小,容抗越来越大,直到感抗可以忽略,此时串联电路中电流与只存在一个电容时几乎相同,好像电感不存在。根据串联电路两端电压和其中的电流计算电容量,与没有电感几乎是相同的。频率非常低时,就可以认为是完全相同。
频率从谐振频率稍微升高一些,所有情况变得相反,现在电路呈感性,但感抗比没有电容时小,从串联电路两端看,好像是容抗“抵消”了一部分感抗,使电感量变小了。频率继续升高,容抗越来越小,感抗越来越大,直到容抗可以忽略,根据串联电路两端电压和其中的电流计算电感量,与没有电容时几乎相同。
对于电感和电容的并联电路,分析完全相同,只不过现在是并联,电感和电容两端电压相同,电感中电流和电容中电流相位相反,“抵消”的是电流而不是电压。
说句题外的话。皮尔斯振荡电路是晶体振荡器,晶体接在集电极与基极之间(皮尔斯当年实际是用电子管,那时还没有晶体管),集电极通过一个并联谐振回路接电源,发射极接地,基极除供给偏置电流的电路外并无其它。这个电路如何能振荡 实际上,我们知道晶体相当于一个很大的电感,集电极上的并联谐振回路稍有失谐,根据上面的分析,相当于一个电容。这样,集电极到基极是电感,集电极到发射极是电容,基极到发射极也是电容(分布电容),刚好构成三点电容式振荡电路(考毕兹电路),因此能够振荡。调节集电极上的并联谐振回路,可以改变这个等效的电容量,从而改变反馈量,控制振荡强度。所以这是个很方便使用的振荡电路。
根据上面的分析,还可以知道,测量电容或电感的结果,与测量时使用的频率有关。电路中总有分布电容和分布电感,这些分布电容和电感会影响测量结果,而且在离谐振频率比较近的地方,会造成很大的影响。因此测量电容或电感,应该使用与实际工作频率比较接近的频率去测量,这样比较能反映实际情况。
回到前面问题。一个22nF电容与电感串联,再与一个22nF电容并联,我们已经知道,22nF电容与电感串联后,可能相当于一个比22nF大的电容,也可能相当于一个电感,这与频率有关。一个比22nF大的电容与一个22nF电容再并联,当然是比44nF大的电容。至于几个不同的22nF电容测量结果相差很大,也容易理解。电容器都有误差,与电感串联后的谐振频率各不相同。我们也知道,测量使用的频率与谐振频率差一点,可能引起“看上去”的电容量很大的变化,因此各个不同的电容器这样与电感串联再与电容并联,测量的结果相差很大就是很正常的了。
读完上面...我感觉....
量电容一般都是通过数字万用表...而数字万用表的量电容方式是量电容在通过400HZ或某一频率下的阻抗达到量电容值...而电容和电感串联...如果频率刚好落在这附近...就会对万用表的读数影响很大...所以会出现上述情况...
为什么把一个223电容与一个电感串联,串联后再与一个223电容并联。然后量这个并联组件的电容,得出不可理解的值:多数这样的组件的电容是44-50nF之间,但有一些是一百多nF,有一些是几百nF(拆开后量,各个电容的值仍然是22nF)。
电感电容串联后,测量电容值问题。讨论这个问题,用复数分析是最简捷最准确的。但这需要比较好的数学基础,能够从数学式中的各个量看出其物理意义。因此本帖尝试不用数学,仅用文字叙述。当然,这样只能进行定性的分析,不可能准确,同时比较冗长罗嗦,但可能物理意义比较清晰。
问题中有三个元件,稍复杂一些,我们先考虑两个元件,即一个电感和一个电容串联。
我们知道,串联电路中电流处处相同。这个相同,不仅是有效值相同,而且瞬时值也相同,也就是说,任何时刻都相同。我们又知道,电感和电容中电流与两端电压不同相,电容两端电压落后于电流90度,而电感两端电压超前于电流90度。现在电感和电容中电流相位相同,所以电感两端电压与电容两端电压相位相反,也就是说,任何时刻电容和电感上的电压是互相“抵消”的。
感抗和容抗都与频率有关。必定存在某一频率,在这个频率感抗与容抗相等。既然电感两端电压是感抗乘电流,电容两端电压是容抗乘电流,所以在这个频率下,电感两端电压恰与电容两端电压大小相等,方向相反,完全抵消。这就是串联谐振。
电感两端电压与电容两端电压完全抵消,那么电流不就是无穷大了 实际上电路中总有一些电阻,所以电流不会是无穷大,但电流很大是肯定的。此时串联电路呈纯阻性,即串联电路两端电压与电路中电流同相。
如果频率稍微降低一些怎么样 频率稍微降低一些,容抗变大一点,感抗变小一点,电容两端电压的大小稍微比电感两端电压的大小大一些,不能完全“抵消”,串联电路中电流仍比较大,注意比没有电感时要大,串联电路呈容性,当然不是纯容性,电路中还有一些电阻。从串联电路两端看,施加的电压没有变化,但电流比没有电感单纯是一个电容时大,好像是电容量变大了。可以这样考虑:感抗“抵消”了一部分容抗,使容抗减少,从串联电路两端看,就好像是电容量变大了。
应该注意到,现在容抗随频率的变化非常快,因为现在感抗与容抗互相“抵消”,频率变化一点点,“抵消”的程度就会差很多,也就是从串联电路两端看上去的电容量随频率很快变化,频率降低一点,“看上去”的电容量就会减少很多。
频率继续降低,感抗越来越小,容抗越来越大,直到感抗可以忽略,此时串联电路中电流与只存在一个电容时几乎相同,好像电感不存在。根据串联电路两端电压和其中的电流计算电容量,与没有电感几乎是相同的。频率非常低时,就可以认为是完全相同。
频率从谐振频率稍微升高一些,所有情况变得相反,现在电路呈感性,但感抗比没有电容时小,从串联电路两端看,好像是容抗“抵消”了一部分感抗,使电感量变小了。频率继续升高,容抗越来越小,感抗越来越大,直到容抗可以忽略,根据串联电路两端电压和其中的电流计算电感量,与没有电容时几乎相同。
对于电感和电容的并联电路,分析完全相同,只不过现在是并联,电感和电容两端电压相同,电感中电流和电容中电流相位相反,“抵消”的是电流而不是电压。
说句题外的话。皮尔斯振荡电路是晶体振荡器,晶体接在集电极与基极之间(皮尔斯当年实际是用电子管,那时还没有晶体管),集电极通过一个并联谐振回路接电源,发射极接地,基极除供给偏置电流的电路外并无其它。这个电路如何能振荡 实际上,我们知道晶体相当于一个很大的电感,集电极上的并联谐振回路稍有失谐,根据上面的分析,相当于一个电容。这样,集电极到基极是电感,集电极到发射极是电容,基极到发射极也是电容(分布电容),刚好构成三点电容式振荡电路(考毕兹电路),因此能够振荡。调节集电极上的并联谐振回路,可以改变这个等效的电容量,从而改变反馈量,控制振荡强度。所以这是个很方便使用的振荡电路。
根据上面的分析,还可以知道,测量电容或电感的结果,与测量时使用的频率有关。电路中总有分布电容和分布电感,这些分布电容和电感会影响测量结果,而且在离谐振频率比较近的地方,会造成很大的影响。因此测量电容或电感,应该使用与实际工作频率比较接近的频率去测量,这样比较能反映实际情况。
回到前面问题。一个22nF电容与电感串联,再与一个22nF电容并联,我们已经知道,22nF电容与电感串联后,可能相当于一个比22nF大的电容,也可能相当于一个电感,这与频率有关。一个比22nF大的电容与一个22nF电容再并联,当然是比44nF大的电容。至于几个不同的22nF电容测量结果相差很大,也容易理解。电容器都有误差,与电感串联后的谐振频率各不相同。我们也知道,测量使用的频率与谐振频率差一点,可能引起“看上去”的电容量很大的变化,因此各个不同的电容器这样与电感串联再与电容并联,测量的结果相差很大就是很正常的了。
读完上面...我感觉....
量电容一般都是通过数字万用表...而数字万用表的量电容方式是量电容在通过400HZ或某一频率下的阻抗达到量电容值...而电容和电感串联...如果频率刚好落在这附近...就会对万用表的读数影响很大...所以会出现上述情况...
射频工程师养成培训教程套装,助您快速成为一名优秀射频工程师...
天线设计工程师培训课程套装,资深专家授课,让天线设计不再难...
上一篇:场效应晶体管的几点使用知识!
下一篇:如何判断分结型场效应管、绝缘栅型场效应管
射频和天线工程师培训课程详情>>