- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
基于56F803型DSP的大功率超声波电源的研究
录入:edatop.com 点击:
1 引言
随着科学的发展和技术的进步.超声波在超声焊接、超声清洗、干燥、雾化、导航、测距、育种等领域的应用日趋广泛。现在的大功率超声波电源大都采用频率跟踪控制或功率控制。这种单一控制方法不仅会降低超声波电源效率,而且会影响输出精度和强度。如何使超声波电源根据实际负载实时,动态调节输出谐振频率和功率,从而保证超声波加工等操作的要求具有重要的理论研究和实际应用价值。
2 超声波电源系统的组成
超声波电源系统主要由220V电源、整流滤波、高频逆变单元、匹配网络、检测电路、PWM产生电路和驱动电路组成,如图1所示。
220V单相交流电经过二极管不可控整流电路得到直流电压,然后经过由MOSFET组成的高频逆变电路得到满足换能器要求的高频电压。为减少高频工作条件下MOSFET的开关损耗,高频逆变电路采用带辅助网络的全桥结构,如图2所示。此电路结构解决了传统零电压开关(ZVS)PWM电路变压器漏感小且滞后桥臂难于实现ZVS的问题。同时,根据电流增强原理,此电路结构可在任意负载和输入电压范围内实现零电压开关,大大减少了占空比丢失。超声波电源与换能器匹配的好坏将决定整个电路的控制效果。因此,应该对匹配网络每个参量(高频变压器匝比K,输出匹配电感Lf)进行严格的计算。匹配主要指为使发生器输出额定电功率,进行阻抗变换匹配。以及为使发生器输出最高效率进行调谐匹配。
采用56F803型DSP作为控制电路的核心处理器.它内置2 KB SRAM,31.5 KB FLASH,同时,其40 MHz的CPU时钟频率比其他单片机具有更强的处理能力。6路PWM信号可以实现高频逆变电路开关管MOSFET的移相控制。12位A/D转换器采集可以实现电压和电流采样并满足采样数据精度的要求。利用56F803型DSP中定时器的捕获功能可以精确计算相位差大小,实现系统的频率跟踪控制。串行外设接口SPI与MCl4489配合使用可以实现对5位半数码管的控制.从而实现系统频率和功率的显示。另外,56F803还支持C语言与汇编语言混合编程的 SDK软件开发包.可以实现在线调试。
驱动电路采用IR21lO型驱动模块.它具有集成度高,响应速度快(tar/taff=120 ns/94 ns),偏值电压高(<600 V),驱动能力强,成本低和易于调试等优点。IR2110是基于自举驱动原理的功率MOSFET驱动电路.驱动信号延时为纳秒级,开关频率可以从数十赫兹到数百千赫兹。同时,IR2110还具有比较完善的保护功能(如欠压检测、抗干扰、外部保护闭锁等)。一个IR2110可以同时驱动单桥臂的上下二个 MOSFET,因此,使用少量分立元件和一路控制电源就可以实现一个桥臂MOSFET 的驱动控制,这样大大减小了驱动电路的体积和成本。
3 系统的控制策略
超声波电源系统采用频率跟踪和功率调节相结合的控制策略,从而使发生器在输出最大功率时可达到最高效率。此种控制策略主要通过控制PWM的周期(也就是控制开关频率)和PWM控制波形的移相角来实现。
3.1 频率跟踪控制的实现
采用锁相法实现频率跟踪控制。使用KT20A/P型电流传感器和KV20A/P型电压传感器分别检测换能器二端的电压和电流,经过滞环控制得到电压和电流的方波信号,如图3所示。该滞环的回差为lV。然后,对二路方波信号经过异或门和D触发器得到相位差波形和相位差符号。相位差波形送入DSP的捕获口,计算出相位差大小T,相位差符号送入GPIOA7口.获得符号标志量flag。当T≠O,flag=o时,表示电压超前电流。此时,应该减小开关管的频率 f;当T≠O,flag=l时,表示电压滞后电流,此时,应该增加开关管的频率f,然后把频率量转化成时间量附给DSP模值寄存器,从而改变输出PWM信号的周期。
3.2 功率控制的实现
为了使高频逆变电路的输出功率满足换能器所需要的额定功率,要采用功率控制电路,即采集直流侧的电流信号与给定的电流值进行比较,并对偏差进行数字PI调节,从而改变移相控制波形的移相角.进而改变高频逆变电路的输出电压。
采集直流侧的电流来实现功率控制的主要原因是通过换能器的电压和电流是交流,需要检波、滤波等处理过程才能检测到,这样比较困难。而直流侧电压是直流量, 基于这种考虑,采用了检测直流侧电流的方法。采用增量式数字PI运算减小偏移量,从而达到无静差控制。直流侧电流实时跟踪给定电流,改变软开关控制信号的移相角,从而改变高频逆变电路的输出电压,当移相角增大时输出电压也增大,所以高频逆变电路最终会输出换能器所要求的功率。
3.3 周期分段实现移相控制
本系统的开关采用占空比为50%的PWM信号移相控制。传统移相控制方法有二种:一种是采用UC3875产生移相控制波形.但电路复杂,不便于调试。精度低:另一种是采用单片机,这种方法大部分采用正弦表产生移相波形,程序冗长、复杂、可读性差。本系统采用周期分段控制方法实现移相控制波形。在每个PWM 周期中把开关管的控制波形分为4段.每段波形中DSP模值寄存器PWMCM的值等于计数器PWMVAL的值。变量Count代表输出的是第几段波形,当 Count=l或Count=3时.把波形I或Ⅲ的模值MODUL01(I和Ⅲ的模值相同)赋给模值寄存器。当Count=l时,PWM模块的0通道和3 通道分别输出高电平和低电平。当Count=3时.PWM模块的0通道和2通道分别输出低电平和高电平;当Count=2或Count=4时.把波形Ⅱ或 IV的模值MODULO 2(Ⅱ和IV的模值相同)赋给模值寄存器.当Count=2时,PWM模块的O通道和3通道都输出高电平。当Count=4时.PWM模块的0通道和2通道都输出低电平。然后,按照上述方式循环输出波形,如图4所示程序框图。
图5为主程序框图。在程序中,频率跟踪部分出现相位差时,先给频率赋一个较大步长(m=100).然后随着相位差的减小.逐渐减小步长.直到相位差为零。
4 实验结果分析
上述超声波电源的主要参数是直流侧电压270 V;开关频率fS=20 kHz;高频变压器匝比K=38:15;谐振电感Lf=3 mH;换能器采用工作频率为20 kHz.内阻为10Ω ,电容为12 000pF,最大输出功率为1500 W。
图6(a)给出逆变桥输出电压和电流实验波形。
图6(b)是Q1管控制波形和漏一源极间电压实验波形。可见,当控制信号使开关管导通时。其漏极和源极之间的电压已经为零,实现了开关管零电压导通
图6(c)是换能器二端电压实验波形。换能器处于固有频率谐振状态时为纯阻性负载,所以二端电压为正弦。
5 结束语
采用频率跟踪和功率协调控制的数控式新型超声波电源具有以下特点:
(1)采用带辅助电路、电流增强型的ZVS全桥变换器.实现了所有开关管的ZVS;(2)实现了频率跟踪与功率控制的协调控制策略,跟踪精度可达4Hz.能够满足超声焊接、超声清洗等控制的要求;(3)采用周期分段控制策略实现ZVS的移相控制,使得程序简化;(4)采用IR2110型集成驱动,驱动简单.减小了系统的体积,降低了成本。
随着科学的发展和技术的进步.超声波在超声焊接、超声清洗、干燥、雾化、导航、测距、育种等领域的应用日趋广泛。现在的大功率超声波电源大都采用频率跟踪控制或功率控制。这种单一控制方法不仅会降低超声波电源效率,而且会影响输出精度和强度。如何使超声波电源根据实际负载实时,动态调节输出谐振频率和功率,从而保证超声波加工等操作的要求具有重要的理论研究和实际应用价值。
2 超声波电源系统的组成
超声波电源系统主要由220V电源、整流滤波、高频逆变单元、匹配网络、检测电路、PWM产生电路和驱动电路组成,如图1所示。
220V单相交流电经过二极管不可控整流电路得到直流电压,然后经过由MOSFET组成的高频逆变电路得到满足换能器要求的高频电压。为减少高频工作条件下MOSFET的开关损耗,高频逆变电路采用带辅助网络的全桥结构,如图2所示。此电路结构解决了传统零电压开关(ZVS)PWM电路变压器漏感小且滞后桥臂难于实现ZVS的问题。同时,根据电流增强原理,此电路结构可在任意负载和输入电压范围内实现零电压开关,大大减少了占空比丢失。超声波电源与换能器匹配的好坏将决定整个电路的控制效果。因此,应该对匹配网络每个参量(高频变压器匝比K,输出匹配电感Lf)进行严格的计算。匹配主要指为使发生器输出额定电功率,进行阻抗变换匹配。以及为使发生器输出最高效率进行调谐匹配。
采用56F803型DSP作为控制电路的核心处理器.它内置2 KB SRAM,31.5 KB FLASH,同时,其40 MHz的CPU时钟频率比其他单片机具有更强的处理能力。6路PWM信号可以实现高频逆变电路开关管MOSFET的移相控制。12位A/D转换器采集可以实现电压和电流采样并满足采样数据精度的要求。利用56F803型DSP中定时器的捕获功能可以精确计算相位差大小,实现系统的频率跟踪控制。串行外设接口SPI与MCl4489配合使用可以实现对5位半数码管的控制.从而实现系统频率和功率的显示。另外,56F803还支持C语言与汇编语言混合编程的 SDK软件开发包.可以实现在线调试。
驱动电路采用IR21lO型驱动模块.它具有集成度高,响应速度快(tar/taff=120 ns/94 ns),偏值电压高(<600 V),驱动能力强,成本低和易于调试等优点。IR2110是基于自举驱动原理的功率MOSFET驱动电路.驱动信号延时为纳秒级,开关频率可以从数十赫兹到数百千赫兹。同时,IR2110还具有比较完善的保护功能(如欠压检测、抗干扰、外部保护闭锁等)。一个IR2110可以同时驱动单桥臂的上下二个 MOSFET,因此,使用少量分立元件和一路控制电源就可以实现一个桥臂MOSFET 的驱动控制,这样大大减小了驱动电路的体积和成本。
3 系统的控制策略
超声波电源系统采用频率跟踪和功率调节相结合的控制策略,从而使发生器在输出最大功率时可达到最高效率。此种控制策略主要通过控制PWM的周期(也就是控制开关频率)和PWM控制波形的移相角来实现。
3.1 频率跟踪控制的实现
采用锁相法实现频率跟踪控制。使用KT20A/P型电流传感器和KV20A/P型电压传感器分别检测换能器二端的电压和电流,经过滞环控制得到电压和电流的方波信号,如图3所示。该滞环的回差为lV。然后,对二路方波信号经过异或门和D触发器得到相位差波形和相位差符号。相位差波形送入DSP的捕获口,计算出相位差大小T,相位差符号送入GPIOA7口.获得符号标志量flag。当T≠O,flag=o时,表示电压超前电流。此时,应该减小开关管的频率 f;当T≠O,flag=l时,表示电压滞后电流,此时,应该增加开关管的频率f,然后把频率量转化成时间量附给DSP模值寄存器,从而改变输出PWM信号的周期。
3.2 功率控制的实现
为了使高频逆变电路的输出功率满足换能器所需要的额定功率,要采用功率控制电路,即采集直流侧的电流信号与给定的电流值进行比较,并对偏差进行数字PI调节,从而改变移相控制波形的移相角.进而改变高频逆变电路的输出电压。
采集直流侧的电流来实现功率控制的主要原因是通过换能器的电压和电流是交流,需要检波、滤波等处理过程才能检测到,这样比较困难。而直流侧电压是直流量, 基于这种考虑,采用了检测直流侧电流的方法。采用增量式数字PI运算减小偏移量,从而达到无静差控制。直流侧电流实时跟踪给定电流,改变软开关控制信号的移相角,从而改变高频逆变电路的输出电压,当移相角增大时输出电压也增大,所以高频逆变电路最终会输出换能器所要求的功率。
3.3 周期分段实现移相控制
本系统的开关采用占空比为50%的PWM信号移相控制。传统移相控制方法有二种:一种是采用UC3875产生移相控制波形.但电路复杂,不便于调试。精度低:另一种是采用单片机,这种方法大部分采用正弦表产生移相波形,程序冗长、复杂、可读性差。本系统采用周期分段控制方法实现移相控制波形。在每个PWM 周期中把开关管的控制波形分为4段.每段波形中DSP模值寄存器PWMCM的值等于计数器PWMVAL的值。变量Count代表输出的是第几段波形,当 Count=l或Count=3时.把波形I或Ⅲ的模值MODUL01(I和Ⅲ的模值相同)赋给模值寄存器。当Count=l时,PWM模块的0通道和3 通道分别输出高电平和低电平。当Count=3时.PWM模块的0通道和2通道分别输出低电平和高电平;当Count=2或Count=4时.把波形Ⅱ或 IV的模值MODULO 2(Ⅱ和IV的模值相同)赋给模值寄存器.当Count=2时,PWM模块的O通道和3通道都输出高电平。当Count=4时.PWM模块的0通道和2通道都输出低电平。然后,按照上述方式循环输出波形,如图4所示程序框图。
图5为主程序框图。在程序中,频率跟踪部分出现相位差时,先给频率赋一个较大步长(m=100).然后随着相位差的减小.逐渐减小步长.直到相位差为零。
4 实验结果分析
上述超声波电源的主要参数是直流侧电压270 V;开关频率fS=20 kHz;高频变压器匝比K=38:15;谐振电感Lf=3 mH;换能器采用工作频率为20 kHz.内阻为10Ω ,电容为12 000pF,最大输出功率为1500 W。
图6(a)给出逆变桥输出电压和电流实验波形。
图6(b)是Q1管控制波形和漏一源极间电压实验波形。可见,当控制信号使开关管导通时。其漏极和源极之间的电压已经为零,实现了开关管零电压导通
图6(c)是换能器二端电压实验波形。换能器处于固有频率谐振状态时为纯阻性负载,所以二端电压为正弦。
5 结束语
采用频率跟踪和功率协调控制的数控式新型超声波电源具有以下特点:
(1)采用带辅助电路、电流增强型的ZVS全桥变换器.实现了所有开关管的ZVS;(2)实现了频率跟踪与功率控制的协调控制策略,跟踪精度可达4Hz.能够满足超声焊接、超声清洗等控制的要求;(3)采用周期分段控制策略实现ZVS的移相控制,使得程序简化;(4)采用IR2110型集成驱动,驱动简单.减小了系统的体积,降低了成本。
射频工程师养成培训教程套装,助您快速成为一名优秀射频工程师...
闂傚倸鍊搁崐鎼佸磹瀹勬噴褰掑炊椤掑鏅悷婊冪箻楠炴垿濮€閵堝懐鐤€濡炪倖妫佸Λ鍕償婵犲洦鈷戠憸鐗堝笒娴滀即鏌涢悩鍐叉诞鐎规洘鍨块獮姗€骞囨担鐟板厞婵$偑鍊栭崝鎴﹀垂閸︻厾鐭堟い鏇楀亾婵﹥妞藉Λ鍐ㄢ槈濞嗘ɑ顥i梻浣呵归敃銈夆€﹂悜鐣屽祦闁硅揪绠戠粈瀣亜閹烘垵鈧骞婂┑鍡╂富闁靛牆妫涙晶顒傜棯閺夎法孝闁宠绉电换婵嬪炊閵娿垺瀚藉┑鐐存尰閸╁啴宕戦幘瀵哥濞达絽鍟垮ú锕傚疾椤掑嫮鍙撻柛銉e妿閳藉鏌i幒鎴犱粵闁靛洤瀚伴獮鎺楀箣濠垫劒鎮i梻浣芥閸熶即宕伴弽顓炶摕闁哄洢鍨归柋鍥ㄧ節閸偄濮堥弫鍫ユ⒒娴e懙褰掝敄閸愵喖绀夌€广儱顦闂佸憡娲﹂崹浼村礃閳ь剟姊洪棃娑掑悍濠碘€虫搐閳绘捇濡堕崱娆戠槇闂佸啿鐨濋崑鎾绘煕閺囥劌澧版い锔垮嵆濮婃椽宕崟顓犲姽缂傚倸绉崇欢姘舵偘椤斿槈鐔煎礂閻撳孩鐎梻浣告啞濞诧箓宕㈣ぐ鎺戠劦妞ゆ巻鍋撻柨鏇ㄤ簻椤繐煤椤忓懎浠梺鍝勵槹鐎笛傜昂濠碉紕鍋戦崐鏍垂閻㈡潌鍥偨缁嬭銉ッ归敐鍛棌婵炵鍔戦弻宥堫檨闁告挾鍠栭悰顕€宕橀纰辨綂闂侀潧鐗嗛幊搴g玻濞戞瑧绡€闁汇垽娼у瓭闁诲孩鍑归崢濂稿煝閹炬椿鏁婇柛鎾楀拑绱抽梻浣呵归張顒勬嚌妤e啫鐒垫い鎺戝濡垹绱掗鑲╁缂佹鍠栭崺鈧い鎺戝閳ь兛绶氬浠嬵敇閻愭鍚呴梻浣瑰濞插秹宕戦幘鍓佺<闁绘瑢鍋撻柛銊ョ埣瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷 | More...
闂傚倸鍊搁崐鎼佸磹瀹勬噴褰掑炊椤掑鏅悷婊冪箻楠炴垿濮€閵堝懐鐤€濡炪倖妫佸Λ鍕償婵犲洦鈷戠憸鐗堝笒娴滀即鏌涢悩鍐叉诞鐎规洘鍨块獮姗€骞囨担鐟板厞婵$偑鍊栭崝鎴﹀垂閸︻厾鐭堟い鏇楀亾婵﹥妞藉Λ鍐ㄢ槈濞嗘ɑ顥i梻浣呵归敃銈夆€﹂悜鐣屽祦闁硅揪绠戠粈瀣亜閹烘垵鈧骞婂┑鍡╂富闁靛牆妫涙晶顒傜棯閺夎法孝闁宠绉电换婵嬪炊閵娿垺瀚藉┑鐐存尰閸╁啴宕戦幘瀵哥濞达絽鍟垮ú锕傚疾椤掑嫮鍙撻柛銉e妿閳藉鏌i幒鎴犱粵闁靛洤瀚伴獮鎺楀箣濠垫劒鎮i梻浣芥閸熶即宕伴弽顓炶摕闁哄洢鍨归柋鍥ㄧ節閸偄濮堥弫鍫ユ⒒娴e懙褰掝敄閸愵喖绀夌€广儱顦闂佸憡娲﹂崹浼村礃閳ь剟姊洪棃娑辨Ф闁稿寒鍣e畷鎴﹀箻鐠囨彃鍞ㄥ銈嗗姉閸犲孩绂嶉悙顒佸弿婵☆垳鍘ф禍楣冩倵濮樼偓瀚�婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柟闂寸绾惧鏌i幇顒佹儓闁搞劌鍊块弻娑㈩敃閿濆棛顦ョ紓浣哄Т缂嶅﹪寮诲澶婁紶闁告洦鍓欏▍锝夋⒑缁嬭儻顫﹂柛鏃€鍨垮濠氭晲婢跺﹦鐤€闂傚倸鐗婄粙鎴﹀煕閹烘垟鏀介柣鎰皺婢ф梻绱掗鐣屾噰鐎殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌涢幘鑼妽闁稿繑绮撻弻娑㈩敃閿濆棛顦ラ梺姹囧€楅崑鎾舵崲濠靛顥堟繛鎴濆船閸擃參姊洪柅鐐茶嫰閸樻悂鏌i幒鐐差洭闁瑰箍鍨归埞鎴犫偓锝庝簽閸婄偤姊洪懖鈹e綊鎮樺顑芥瀺闁瑰墽绮埛鎺懨归敐鍛暈闁哥喓鍋炵换娑氭嫚瑜忛悾鐢碘偓瑙勬礃缁矂鍩ユ径鎰潊闁抽敮鍋撻柟绋垮暣濮婃椽宕ㄦ繝鍐槱闂佺ǹ绻戠粙鎾诲箲閵忋倕骞㈡繛鎴炵懅閸橆亪姊洪崜鎻掍簼缂佽鍟村畷宕囨喆閸曗晙绨婚棅顐㈡处閹搁箖骞楅悩鐫酣宕惰闊剚銇勯姀鈩冪妞ゃ垺顨嗛幏鍛村礈闊厾澶�
闂傚倸鍊搁崐鎼佸磹瀹勬噴褰掑炊椤掑鏅悷婊冪箻楠炴垿濮€閵堝懐鐤€濡炪倖妫佸Λ鍕償婵犲洦鈷戠憸鐗堝笒娴滀即鏌涢悩鍐叉诞鐎规洘鍨块獮姗€骞囨担鐟板厞婵$偑鍊栭崝鎴﹀垂閸︻厾鐭堟い鏇楀亾婵﹥妞藉Λ鍐ㄢ槈濞嗘ɑ顥i梻浣呵归敃銈夋倶濠靛鍋╅梺鍨儑闂勫嫮绱掔€n亞浠㈢€规挸妫濆铏圭磼濡搫顫嶅銈嗘⒐閻楁洖宓勫┑鐐叉▕娴滄繈鎮¢悢鍏肩厽闁哄倹瀵ч幉鎼佹煟椤撶偠瀚版い顓″劵椤﹁櫕銇勯妸銉уⅵ鐎殿噮鍋婇、姘跺焵椤掑嫮宓侀柟鐑橆殔缁秹鏌嶈閸撶喎顕i崘娴嬪牚闁割偆鍠撻崢鐢告⒑鐠団€崇仭婵犮垺枪椤e潡姊绘担铏瑰笡闁规悂绠栧畷浼村箛閺夎锕傛煕閺囥劌鐏遍柡浣稿暞閵囧嫰骞囬埡浣轰患缂備胶濮惧畷鐢垫閹惧瓨濯撮柣銈庡灠閸橈繝姊虹粙璺ㄧ闁挎洏鍨归锝嗙節濮橆厽娅滄繝銏e煐钃遍柡鍜冪秮濮婅櫣绱掑Ο鍝勵潔缂備椒鐒﹂幐鎶界嵁閹版澘绀冩い鏃囆掗幏娲⒑閼姐倕鏋戞繝銏∶嵄缂備焦菧娴滄粓鏌熺€涙ḿ绠ユ俊顖楀亾闂備胶绮笟妤呭闯閿濆宓侀悗锝庡枟閺呮繈鏌嶈閸撴稓鍒掔拠娴嬫闁靛繆妾ч幏濠氭⒑閸撴彃浜為柛鐘虫崌閸╁﹪寮撮姀锛勫幈婵犵數濮撮崐鍧楀矗閸曨剚鍙忓┑鐘插鐢盯鏌熷畡鐗堝殗闁圭厧缍婇悰顔芥償閹惧厖澹曟繝鐢靛Т濞诧箓鎮″☉銏$厱婵炴垵宕弸銈囩磼閻橀潧浠遍柡灞炬礋瀹曢亶寮撮悩鎻掝瀴缂傚倷鑳剁划顖滄崲閸繄鏆﹂柛顐f礃閸ゅ鏌涢…鎴濅簼闁绘繐绠撳濠氬磼濞嗘埈妲梺瑙勭ゴ閳ь剝绉ú顏呮櫇闁稿本鑹鹃崑宥夋⒑娴兼瑧鍒板璺烘喘瀹曟垿骞橀幇浣瑰兊濡炪倖鎸鹃崑娑㈠箺閻㈠憡鈷戦柛婵嗗濠€浼存煟閳哄﹤鐏﹂柣娑卞枛铻e〒姘煎灡鐎靛矂鏌i悩鍙夌┛鐎殿喗鎸荤粩鐔煎即閵忊檧鎷绘繛杈剧到閹诧繝骞嗛崼銉︾厽妞ゆ挾鍎愬Ο鈧Δ鐘靛仜缁绘﹢寮幘缁樻櫢闁跨噦鎷�
闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗霉閿濆牊顏犵紒鈧繝鍌楁斀闁绘ɑ褰冮埀顒€顕槐鎾愁潩鏉堛劌鏋戦梺鍝勫暙閻楀嫰鍩€椤戣法绐旂€殿喕绮欓、姗€鎮欓懠鍨涘亾閸喒鏀介柨娑樺娴犙呯磼椤曞懎鐏︾€殿噮鍋婇幃鈺冪磼濡攱瀚奸梻鍌欑贰閸嬪棝宕戝☉銏″殣妞ゆ牗绋掑▍鐘炽亜閺傛娼熷ù婊勭矋閵囧嫰骞樼捄杞版勃闂佺ǹ顑冮崕鎶藉焵椤掑喚娼愭繛鍙夌矒楠炲﹪骞樼拠鑼弨婵犮垼娉涜墝闁哄閰i弻鐔兼焽閿曗偓閺嬫稓绱掗幓鎺撳仴婵﹤顭峰畷鎺戔枎閹存繂顬夐梻浣筋嚃閸犳牠鎮ラ悡搴f殾闁圭増婢橀崡鎶芥煟韫囨凹鍤欑紓宥咃躬楠炲啫饪伴崼鐔风檮婵犮垼娉涢惌鍫ュ船閻㈠憡鈷戦悹鍥ㄥ絻閸よ京绱撳鍛棦鐎规洑鍗冲浠嬵敃閵堝嫮鐟濋梻浣告惈鐞氼偊宕曢弻銉﹀亗婵炲棗绶疯ぐ鎺撳亗閹艰揪绲鹃幉鐓庘攽閻愭潙姣嗛柛銉e妿閸橀潧顪冮妶鍡橆梿鐎规洜鏁哥划锝夊籍閳ь剟骞堥妸锔剧瘈闁告侗鍣禒鈺呮⒑閸涘﹦澧柣妤冨Т椤曪綁骞橀钘変簻闂佸憡绺块崕杈╁緤閸喒鏀介柨娑樺娴滃ジ鏌涙繝鍐ㄧ伌鐎规洜顢婇妵鎰板箳閹惧瓨鐝栨俊鐐€曠换鎰版偋閸曨垰鐒垫い鎴f硶椤︼箓鏌嶇拠鏌ュ弰妤犵偞锚閻g兘宕堕懜鏁屟冣攽閿涘嫬浜奸柛濠冪墵楠炴劖銈i崘銊х崶闁瑰吋鐣崝宥夊磻閻旇褰掓偂鎼达絾鎲奸梺鎶芥敱閸ㄥ潡寮诲☉妯锋婵鐗婇弫楣冩煟鎼达紕浠涢柣鐔叉櫊瀵顓奸崼顐n€囬梻浣告啞閹搁箖宕版惔顭戞晪闁挎繂妫涚弧鈧┑顔斤供閸樿棄鈻嶉姀銈嗏拺閻犳亽鍔屽▍鎰版煙閸戙倖瀚�
婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柛娑橈攻閸欏繐霉閸忓吋缍戦柛銊ュ€婚幉鎼佹偋閸繄鐟查梺绋匡工閻栧ジ寮诲☉銏╂晝闁绘ɑ褰冩慨搴ㄦ⒑濮瑰洤鈧宕戦幘鑸靛床婵犻潧顑嗛ˉ鍫熺箾閹存繂鑸归柛鎾插嵆濮婃椽宕ㄦ繝鍛棟缂傚倸绉撮敃顏堟偘椤曗偓瀵粙濡搁敂鍓ら梻浣告啞閹稿棝宕ラ柨瀣仸缂佺粯绻傞埢鎾诲垂椤斿彞鍝楅梻渚€娼ч悧濠囧箖閸屾凹鍤曞┑鐘崇閸嬪嫰鏌i幋鐏活亪寮搁崒鐐粹拺闁告稑锕ユ径鍕煕鐎n亜顏い銈呭€垮濠氬磼濞嗘埈妲梺纭咁嚋缁绘繂鐣峰ú顏勭妞ゆ棁鍋愰敍娑㈡⒑閻熸澘鈷旂紒顕呭灦閹繝鎮㈤悡搴n啇濠电儑缍嗛崜娆撳焵椤戞儳鈧洖鐜婚崸妤€绠涢柣妤€鐗忛崢闈涱渻閵堝棙顥嗛柛瀣姍瀹曟椽鏁愰崶锝呬壕閻熸瑥瀚粈鍐╃箾閼碱剙鏋涢柣娑卞枟閹棃濡搁敃鈧惂鍕節閵忥絾纭鹃柤娲诲灦閻涱噣骞掑Δ浣叉嫽婵炶揪绲挎灙闁诡喗鍨圭槐鎺撴媴鐟欏嫬鍞夐悗娈垮枟瑜板啴銈导鏉戦唶婵犻潧娲╃欢銏$節閻㈤潧孝闁挎洏鍊濋幃褎绻濋崶銊ヤ簵闂佸搫娲ㄩ崰鍡樼濠婂牊鐓欓柡澶婄仢椤f娊鏌熼鍨汗缂佽鲸甯¢幃鈺冪驳绾應鍋撻崸妤佺厸閻忕偛澧介埥澶嬨亜椤愶絿绠炴い銏★耿閹晠宕橀崣澶屽酱闂傚倸鍊峰ù鍥敋閺嶎厼绐楁繛鎴緛缂嶆牕顭跨捄铏圭伇缂佺姵妫冮弻锝夊籍閸屾艾浠橀梺缁樺姇閿曪箓骞夌粙娆惧悑闁搞儮鏅欑粭澶愭⒑閼姐倕鏋涢柛瀣工閵嗘帗绻濆顓犲帾闂佸壊鍋呯换鍌炲汲濞嗗繆鏀介柨娑樺濞呮洜绱掓潏銊ユ诞妞ゃ垺鐟︾缓鐣岀矙閸喖寮峰┑掳鍊楁慨鐑藉磻濞戔懞鍥敍濠靛牅绨烽梻鍌欑閹测剝绗熷Δ鍛獥婵°倐鍋撻柍璇茬Ч婵偓闁靛牆妫岄幏娲煟閻樺厖鑸柛鏂胯嫰閳诲秹骞囬悧鍫㈠幍闂佸憡鍨崐鏍偓姘炬嫹
射频和天线工程师培训课程详情>>