- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
如何选择电源
录入:edatop.com 点击:
<[p]
>由于电子产品的风靡,能够用多种电源供电的设备已经屡见不鲜了。例如,工业手持式仪表或便携式医疗诊断设备大部分时间用电池供电,但一旦插入交流适配器或 USB 端口,就从交流适配器或 USB 端口吸取功率了,这时既为电池充电,又为系统供电。在移动系统的另一端,大型高可用性服务器机架内至少有两个电源,以在任何一个电源出故障时,保持服务器正常运行。存储服务器则用超级电容器作备份电源,以在主电源断开时,干净利落地实现无差错停机,当然,也有些服务器采用大电流主电源和小电流辅助电源。所有这些系统都面临着一项重要任务,即在各种不同的可用电源中,选择一个为系统负载供电。[p]
><[p]
>电源多路复用中隐藏的问题[p]
><[p]
>在给定环境中选择合适电源这一任务,听起来简单轻松,但是如果选择不当,后果很严重,可能造成系统故障并损坏电源。如果加在电源输出端的电压较高,那么在并联工作的电源之间进行切换可能导致电流回流到电源中。有些电源如果遭遇能量返回,就会出现故障,使控制环路中断,引起电源输入端子过压,这有可能导致电容器及其他器件烧掉。并联电源切换时还存在一个风险,即所有电源与输出之间的断接时间都可能过长,导致输出电压下降,系统复位或系统运行不正常。当电源之间的电压比较接近时,会出现第三个问题。有些基于比较器的控制方法引入了一种振荡模式,即在电源之间连续切换,这样一来,电源之间的切换就需要周密设计了。[p]
><[p]
>相同的电源[p]
><[p]
>让我们从最简单的情况开始——由两个相同的电源给一个系统供电。这里相同的含义是,相同的标称电压,其变化在电源容限范围内,通常为百分之几。这种情况出现在高可用性服务器中,这类服务器配备两个或更多冗余电源,以在任何电源出现故障时,能够不间断运行。在这类系统中,一种简单的方法是,选择电压最高的电源给系统供电。两个二极管的阳极分别连接两个电源,阴极则连在一起,形成所谓的二极管“或”电路,这样就实现了由电压较高的电源供电的功能 (参见图 1)。仅连入一个电源时,这个电路也正常工作。存在两个电源时,电压较高的那个电源,其二极管正向偏置,另一个二极管则反向偏置。[p]
><[p]
>&nbs[p]
;[p]
> <[p]
style="text-align: center;">图 1:两个电源的二极管“或”电路向负载供电[p]
><[p]
>新式服务器中有多个板卡,功率轻易就能超过千瓦,因此 12V DC 电源须提供 50A 到 100A 的电流。运用普通的老式二极管,即使是压差较低的肖特基二极管,对这样两个 12V 电源进行二极管“或”,如果不是不可能,也要面临可怕的热量管理任务,因为在这么大电流时,两个二极管的电压下降 1V,就会消耗很大的功率,例如,在 50A 电流时,功耗为 50W。因此需要压差低得多的理想二极管。正像解决其他许多电路问题时一样,MOSFET 再次伸出了援手。MOSFET 加上一个检测电路,可起到理想二极管的作用,正向偏置时 (输入高于输出),接通压差非常低,反向偏置时 (输入低于输出) 则断开。理想二极管压差可降至普通二极管的 1/10,因此功耗降至可应对的 5W。通过 RDS(ON) 为 2mΩ 的单个或并联 N 沟道 MOSFET,很容易实现这样的理想二极管“或”电路。图 2 显示了一个这样的电路及其 I-V 曲线。凌力尔特的 LTC4352 控制一个 N 沟道 MOSFET,以实现理想二极管功能。这样的两个电路并联,就形成了一个理想二极管“或”电路,可用于冗余电源系统。按照一定比例线性跟随 MOSFET 的压降,可确保电源不产生振荡,平滑切换,而 0.5µs 的快速接通和断开时间,则最大限度地减小了输出压降和反向电流。 [[p]
]
[p]
><[p]
>&nbs[p]
;[p]
> <[p]
style="text-align: center;">图 2:具 UV/OV 的 LTC4352 理想二极管及其 I-V 曲线[p]
><[p]
>理想二极管的功能是无源二极管望尘莫及的。仅当输入处于欠压 (UV) 和过压 (OV) 门限设定的有效范围之内时,LTC4352 才能成为理想二极管。STATUS# 引脚向下游电路提供 MOSFET 接通或断开的状态信号,FAULT# 引脚指示 MOSFET 是由于 UV/OV 状况而关断,还是由于 MOSFET 呈电阻性或开路而导致过大压降,后者在故障发生之前发出了即将出现故障的警报。[p]
><[p]
>让我们共享负载吧[p]
><[p]
>二极管“或”是一种“赢家通吃”型系统,在这种系统中,电压最高的电源提供全部负载电流。如果两个电源均等地向负载供电,将热量压力一分为二共同承担,那么电源系统的可靠性会大幅提高,电源的寿命也可得到延长。然而,许多调节电源的负载共享电路受到了环路振荡的困扰。与电源变化互动的负载共享控制环路使问题变得复杂了。在这里利用理想二极管概念可以解决问题。通过调节理想二极管压降,补偿电源电压之差,可以使两个理想二极管的输出电压相等。在这两个相等的点和共享负载之间加入检测电阻器,可确保两个电源流出的电流相等或成一定比例。LTC4370 二极管“或”均流控制器采用了这种针对两个电源的均流方法 (参见图 3)。这种方法可补偿高达 600mV 的电源电压之差,这意味着两个 12V 电源具有 &[p]
lusmn;2.5% 的容限,或两个 5V 电源具有 &[p]
lusmn;6% 的容限。[p]
><[p]
>&nbs[p]
;[p]
> <[p]
style="text-align: center;">图 3:LTC4370 在两个二极管“或”连接的 12V 电源之间均衡 10A 负载电流。通过调节 MOSFET 压降来补偿电源电压失配,以实现均流。[p]
><[p]
>不同的电源[p]
><[p]
>在上述的服务器例子中,两个电源相同时,二极管“或”和负载共享方法非常适用。但是这些方法不适合电池供电系统,在这类系统中,输入来自电池、交流适配器或 5V USB 电源,也就是说,这些电源的标称电压差异甚大。在有些情况下,还会涉及超级电容器备份电源。因此,需要一种更加通用的解决方案,而不是简单地通过衡量电源电压高低来工作。这种解决方案称为优先级供电处理器。该解决方案的基础是,电池供电系统的电源有一个优先顺序。通常情况下,交流适配器排在最前面,只要存在交流适配器,系统就从交流适配器吸取功率。每一种电源都必须有一个确定的有效电压范围 (以检测该电源的存在) 和优先级。如果某种电源存在,就会按照它的优先级考虑是否用它给系统供电。LTC4417 优先级选择器根据 3 个电源的有效电压窗口和优先级作出选择,仅将其中之一连接到输出 (参见图 4)。小心切换以免将两个电源连到一起,仅在输出电压低于输入电压时才将电源连接到输出。这最大限度地减小或消除了流回电源的反向电流。另外,这么做还实现了受控的快速切换,以限制输出电压下降和浪涌电流。[p]
><[p]
>&nbs[p]
;[p]
> [[p]
]
<[p]
style="text-align: center;">图 4:LTC4417 3 电源优先级供电处理器[p]
><[p]
>结论[p]
><[p]
>视系统中采用的电源种类的不同而不同,首先需要为电源多路复用选择合适的解决方案。可选择的方案是二极管“或” (有或没有负载共享) 和优先级供电处理器。不论选择哪种方法,选择正确的电源给负载供电都需要仔细设计,以避免毁掉整个系统。流回到电源的反向电流和输出电压下降要尽量减小,以避免引起电源之间来回振荡性地切换。本文介绍的这些解决方案以简练的方法解决了这些问题。[p]
>
射频工程师养成培训教程套装,助您快速成为一名优秀射频工程师...
天线设计工程师培训课程套装,资深专家授课,让天线设计不再难...
上一篇:对UC3842集成块组成的彩显开关电源电路进行分析和优化改进
下一篇:汽车自动启停系统对电源的影响及安森美半导体非同步升压转换器方案
射频和天线工程师培训课程详情>>