- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
电感式DC/DC
它是通过电感不断的储能/放电,最后达到稳定电压/电流输出的转换器。根据输出电压与输入电压的高低比较,可以分为boost(输出电压远高于输入电压)和buck(输出电压低于输入电压)。它们的拓扑结构不同。
Boost一般用于lcd串联背光驱动以及oled驱动,一般使用得输出电压在十几伏。
Buck 用于多媒体协处理器的核电压。
1. 工作原理(BUCK)
上图降压转换器最基本的电路:是利用MOSFET开关闭合时在电感器中储能,并产生电流。当开关断开时,贮存的电感器能量通过二极管输出给负载。 输出电压值与占空比(开关开启时间与整个开关周期之间的比 )有关。
2. 整流二极管的选择
该二极管必须具有与输出电压相等或更大的反向额定电压。其平均额定电流必须比所期望的最大负载电流大得多。其正向电压降必须很低,以避免二极管导通时有过大的损耗。此外,因为MOSFET工作于高频开关模式,所以需要二极管具有从导通状态到非导通状态时,很快恢复。反应速度越快,DC/DC的效率越高。
肖特基二极管(而非传统的超快速二极管)具有更低的正向电压降和极佳的反向恢复特性。
3. 同步整流技术
同步整流是采用通态电阻极低的专用功率MOSFET,来取代整流二极管以降低整流损耗的一项新技术。它能大大提高DC/DC变换器的效率。功率MOSFET属于电压控制型器件,它在导通时的伏安特性呈线性关系。用功率MOSFET做整流器时,要求栅极电压必须与被整流电压的相位保持同步才能完成整流功能,故称之为同步整流。
当输出电压降低时,二极管的正向电压的影响很重要,它将降低转换器的效率。物理特性的极限使二极管的正向电压降难以降低到0.3V以下。相反,可以通过加大硅片的尺寸或并行连接分离器件来降低MOSFET的导通电阻RDS(ON)。因此,在给定的电流下,使用一个MOSFET来替代二极管可以获得比二极管小很多的电压降。
在同步降压转换器中,通过用两个低端的MOSFET来替换肖特基二极管可以提高效率(图1b)。这两个MOSFET必须以互补的模式驱动,在它们的导通间隙之间有一个很小的死区时间(dead time),以避免同时导通。同步FET工作在第三象限,因为电流从源极流到漏极。
4. 电感器的选择
随着开关的打开和闭合,升压电感器会经历电流纹波。一般建议纹波电流应低于平均电感电流的20%。电感过大将要求使用大得多的电感器,而电感太小将引起更大的开关电流,特别在输出电容器中,而这又要求更大的电容器。
电感值的选择取决于期望的纹波电流。如等式1所示,较高的VIN或VOUT也会增加纹波电流。电感器当然必须能够在不造成磁芯饱和(意味着电感损失)情况下处理峰值开关电流。
由公式可以得出:
(1) 开关频率越高,所需的电感值就可以减小;
(2) 电感值增大,可以降低纹波电流和磁芯磁滞损耗。但电感值的增大,电感尺寸也相应的增大,电流变化速度也减慢。
为了避免电感饱和,电感的额定电流值应该是转换器最大输出电流值与电感纹波电流之和。
电感的直流电阻(RDC),取决于所采用的材料或贴片电感器的构造类型,在室温条件下通过简单的电阻测量即可获得。RDC的大小直接影响线圈的温度上升。因此,应当避免长时间超过电流额定值。
线圈的总耗损包括RDC中的耗损和下列与频率相关联的耗损分量:磁芯材料损耗(磁滞损耗、涡流损耗);趋肤效应造成的导体中的其他耗损(高频电流位移);相邻绕组的磁场损耗(邻近效应);辐射损耗。
将上述所有耗损分量组合在一起构成串联耗损电阻(Rs)。耗损电阻主要用于定义电感器的品质。然而,我们无法用数学方法确定Rs,一般采用阻抗分析仪在整个频率范围内对电感器进行测量。
电感线圈电抗(XL)与总电阻(Rs)之比称为品质因素Q,参见公式(2)。品质因素被定义为电感器的品质参数。损耗越高,电感器作为储能元件的品质就越低。
品质—频率图可以帮助选择针对特定应用的最佳电感器结构。如测量结果图2所示,可以将损耗最低(Q值最高)的工作范围定义为一直延伸到品质拐点。如果在更高的频率使用电感器,损耗会剧增(Q降低)。
良好设计的电感器效率降低微乎其微。不同的磁芯材料和形状可以相应改变电感器的大小/电流和价格/电流关系。采用铁氧体材料的屏蔽电感器尺寸较小,而且不辐射太多能量。选择何种电感器往往取决于价格与尺寸要求以及相应的辐射场/EMI要求。
5. 输入电容的选择
因为buck有跳跃的输入电流,需要低ESR的输入电容,实现最好的输入电压滤波。输入电容值必须足够大,来稳定重负载时的输入电压。如果用陶瓷输出电容,电容RMS纹波电容范围应该满足应用需求。
陶瓷电容具有低ESR值,表现出良好的特性。并且与钽电容相比,陶瓷电容对瞬时电压不敏感。
6. 输出电容的选择
输出电容器的有效串联电阻(ESR)和电感器值会直接影响输出纹波电压。利用电感器纹波电流((IL)和输出电容器的ESR可以简单地估测输出纹波电压。
输出电压纹波是由输出电容的ESR引起的电压值,和由输出电容冲放电引起的电压纹波之和
有些厂家的DC/DC产品的内部由补偿环路,以实现最佳的瞬态响应和环路稳定性。当然,内部补偿能够理想地支持一系列工作条件,而且能够敏感地响应输出电容器参数变化。
7. BOOST 与 BUCK的拓扑结构
如上图,BOOST 与 BUCK电路结构不一样, Boost 电路是电感在输入电源与升压整流管之间, 开关管接电源地. BUCK 是电感在开关管与出电源之间,续流二级管反向接开关管与电源地.
射频工程师养成培训教程套装,助您快速成为一名优秀射频工程师...
天线设计工程师培训课程套装,资深专家授课,让天线设计不再难...
上一篇:DC-DC转换器
下一篇:开关电源PFC及其工作原理(
)