• 易迪拓培训,专注于微波、射频、天线设计工程师的培养
首页 > 电子设计 > 电源技术 > DCDC开关电源 > 细说DC-DC转换器的抗干扰性(1)

细说DC-DC转换器的抗干扰性(1)

录入:edatop.com    点击:

DC-DC转换器

这里我会分几篇文章来详细讨论DC-DC转换器的抗干扰性这一主题,第一讲我们来简单聊聊DC-DC转换器

自从电子学诞生以来,就流传着一句老话…“所有问题都是DC问题。”

当然,DC指“直流”,即电路中穿过导体由A点至B点的单向电流。我们知道,这里所说的“问题”意思很简单,就是…问题。那么,为什么所有问题都是DC问题呢

我们知道,电流和电子简单来说是完整电路系统中,各种导体和器件中的电流产生的能量。因此,归根结底是一种能量转换。能量是做功的能力,以两种形式存在:1)势能和2)动能。势能是一种非活动状态的蓄能 (如电池端子间的电压)。动能是势能转变为活动状态时产生的能量 (如电流穿过灯泡)。电子学简单来说是通过控制各种导体中的电流,将势能 (电压) 转变为动能 (电流) 的科学! 欧姆‘DC定律’必须始终满足能量转换才能产生作用!因此,电路输入与输出之间的每一部分,无论是否具备AC功能,必须出色设计电路的DC结构,才能有效支持无论何种形式的能量转换。换句话说,如果电路DC设计不良,不可能实现AC性能。

这种情况给设计师造成极大压力,需要在电源与接地之间“模拟设计”的基础上,掌握多学科领域高水平专业技术。相对于各种输入信号,要想在各种电压条件下以低噪声转换直流 (DC),首先需要选择正确的DC-DC转换器。DC-DC转换器有各种尺寸和类型:转换器包括线性、开关模式和磁电等不同类型。而且,升压 (步升) 和降压 (步降) 功能采用类型各异的能量转换电路。正确了解这些电路类型,可以避免使用时性能下降。后面,我们可以分析行业领导者推出的器件,如国家半导体公司最近推出的Simple Switcher电源模块。

“所有问题都是DC问题…”,在考虑DC-DC转换器时了解这一点,可以为良好的电路设计奠定基础。

第二讲:线性调节器

线性调节器是所有DC-DC转换器最基础的器件。线性调节器是一种稳压器,相对于在“非线性”开关模式区域工作的开关调节器(我们将在后面讨论这种器件),线性调节器在“线性区域”工作。线性调节器必须满足为负载提供额定电源 (低噪声达到可接受水平),同时降低输出阻抗的要求,以使电压增益不受负载阻抗值的影响。线性调节器起可变电阻的作用,调节分压网络,以保持恒定的输出电压,同时提供各种负载电流。

无标题.jpg

 

 

图1

图1所示为线性调节器原理图。图中所示为“串联”线性调节器电路,因为调节器件 (晶体管Q) 与负载R2串联。电路调节齐纳二极管DZ输出电压 (因为晶体管基极电流是齐纳管至R1偏置电流的很小一部分)。晶体管发射极输出电压低于齐纳管电压一个二极管压降,并有足够的电流增益驱动高输出值Iout (经R2)。尽管电路具有良好的输出电压调节能力 (只要Q在线性区域工作),但仍会感应负载、电源变量(Vs)、噪声和电源纹波。其中有些问题可以采用负反馈电路感应电路输出来解决,其他时候,这个电路往往用作电压基准,支持更加先进的线性调节器设计。设计或选择线性调节器时,还必须慎重考虑电噪声、电源Vs至Vout产生的纹波,以及调节器输出中可能耦合的共模电压。

例如,选择线性调节器时,必须认真确定电路功率要求和稳压器输出特性。以国家半导体公司LM340/LM78XX系列三端正压调节器为例,这类线性调节器是业界具有基础设计要素的标准器件。一般情况下,部分器件规定了固定输入电压条件下的固定输出电压 (一般Vs-Vout>2V),以及最大固定输出负载电流Iout。 [p]

负载调节在给定输出电流范围内 (∆Iout) 定义输出电压 (∆Vout) 的变化。由于输出电压接近Vs输入电压,串联输出电压调节晶体管 (Q1) 近饱和状态和电压/电流增益衰降,会导致负载调节特性恶化。这种情况也适用于线路调节。线路调节是在给定输入电压 (∆Vs) 范围内改变输出电压 (∆Vout)。同样,∆Vo线路调节一般以mV级定义低电平∆Vs,随着输入电压的变化,mV级可以放大十倍(与输出电压相比),达到输出电压调节晶体管接近击穿点时,其增益会随之下降。线路调节还可以实现纹波抑制 (∆Vin/∆Vout比),且应大于60 dB,以避免AC波纹通过输入电源线路接入线性调节器DC输入电压。纹波抑制对于需要保证精确增益和dc精度的模拟系统至关重要。对进入线性调节器的电源纹波,还可以通过增加必要的电源去耦电容,进一步滤除线性调节器输入和输出中不希望出现的纹波来加以改善 (后面我们将深入讨论电源去耦问题)。

去耦示意图 (Vout通过与两个电容串联的L接地)

 

2无标题.jpg

 

图2

正确去耦以降低噪声的一些重要设计理念如图2所示。将一个大容量电解电容C1 (一般为10 µF – 100 µF) 放在线性调节器输出端附近 (2英寸以内)。这个电容用作电荷库,可即刻为负载提供电流,而不必通过调节器/电感提供电荷。小容量电容C2 (一般为0.01 µF – 0.1 µF) 的位置应尽可能靠近负载,这个电容的目的是降低负载的高频噪声。所有去耦电容应连接大面积低阻抗接地层,以降低阻抗。线性调节器输出端电感器L1 (通常采用小型铁氧体磁珠) 限制系统内噪声并抑制外部负载高频噪声,同时避免内部产生的噪声 (来自负载) 传播到系统的其他部分。

去耦可以非常有效地滤除 (频带限制) 线性调节器的噪声功率。线性调节器噪声功率往往规定为几微伏均方根值 (rms),如LM340/78XX系列。这个噪声值可以限定在10Hz至100 KHz窄带宽范围内,但必须注意,如果不采用交流去耦的话 (如上所述),实际噪声带宽会非常高。

最后,尽管线性调节器使用简便 (一般为3个端子,即输入、接地和输出),在大部分电路环境下具有出色的DC和AC特性,但在热特性方面存在极大局限性。由于线性调节器内部电路输入电压Vs高于输出电压Vout (Vs-Vout>2V),这种压差(Vs-Vout)乘以输出电流 (Iout) 给出的功率值,最终成为线性调节器和系统的热耗散。必须认真考虑这种热量转换因素。在整个设计中,必须考虑正确散热和系统周围气流问题。例如,如果线性调节器最大结温为150 °C (且系统中没有散热器或气流),系统环境温度可达到125 °C;如果Θja接近 50 °C/W,线性调节器最大功率输出应限制在 ½ W以下,以保持在可接受的结温极限以内。这是为什么线性调节器对于需要大功率和热效率的系统存在显著缺点。下面的文章,我们将讨论解决这两个问题的开关调节器。

线性调节器仍是电子器件和系统设计的关键,无论驱动其他器件的独立电路,还是驱动其他片上电路的子单元。为保证整体系统达到最高性能,需要认真设计并遵守技术规格的要求。

射频工程师养成培训教程套装,助您快速成为一名优秀射频工程师...

天线设计工程师培训课程套装,资深专家授课,让天线设计不再难...

上一篇:全桥式逆变器/双极性控制方式
下一篇:开关电源主电路拓扑结构的分析与比较

射频和天线工程师培训课程详情>>

  网站地图