- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
PTH的沉铜工艺
(1)电解液构成及作业条件
关于Soft Alloy GTC的标准电解液构成和作业条件,Soft Alloy GTC产品系列对应由滚筒式电镀直到高速电镀的宽阴极电流密度范围应用,同时,用户可根据用途选择电解液,例如,对于耐药性方面有问题的电子元器件可选用中性的电解液。
(2)良好镀层外观
关于Sn-Cu电镀层的表面形状当放大1000倍时观察各种电解液构成的镀层(包括滚筒式电镀、支架式电镀和高速电镀电解液形成的镀层),均都致密且呈现半光泽状。
(3)析出比率
电镀层的析出比率、可作出定量分析。具体作法是使用SUS作为基底进行电镀,把其电镀层溶解到1:1硝酸溶液中,通过原子吸收光;谱分析将获得定量分析结果。例如,在支架电镀的电解液里金属比率和镀层里铜Cu含有率之间的关系。在电解液里Cu的含有率增加的情况下,镀层里的铜Cu含有率也几乎成正比地增长,根据这种近似的线性关系很容易管理合金比例;电解液中Cu的含有率与1wt%时的阴极电流密度和镀层中Cu含有率的关系,从中不难看出除了在低电流密度时镀层中的Cu含有率偏高—些之外,基本上与电流密度无关,比较稳定。也就是说,电流密度超过2A/cm2以后,基本上镀层中的含Cu率不再受阴极电流密度左右。
(4)关于电镀层的熔点
关于Sn-Cu电镀层的熔点测试方法如下,取10mg的Sn-Cu镀层,在流动氮气流速为50mL/分的环境下,将温度由室温开始,以10℃份的升温速度加温到300C,测量其熔点。测试结果,以差示扫描热量分析曲线表示,详见图4所示。对三种样品实测结果,它们的熔融峰值温度都处于Sn-Cu合金的共晶温度227℃附近;即使是电镀层样品中的Cu含有率有差异,但是,熔融峰值温度几乎是相同的。
(5)焊料润湿性优秀
有比较才能有鉴别,为了证实Sn-Cu焊料镀层的润湿性是否优秀,采用Meniscograph方法构成的Zero CrossTime对各种焊料镀层断评比。具体作法是以Soft Alloy GTC-20电解液用支架式电镀方法制造出多种焊料镀层样品,通过高温高湿处理(温度:60℃相对湿度:95%,处理时间:168小时)后,进行润湿性评比。具体的Menis-cograph测试条件。测试样品的制作过程如下:在铜基础材料上先电镀一层Ni,再在其表面上电镀所要测试的Sn-Cu镀层。用作对比的镀层样品是Sn和Sn-Pb镀尾测试条件完全相同。
评比测试的结果,测试样品和对比用样品,当它们在高温高湿处理之前,各个焊料镀层的润湿性几乎是相同的。但是,经过高温高湿处理之后,利用Zero Cross Time进行比较,一目了然。
评比结果,除Sn-3.5wt%Cu镀层的润湿性比Sn-Pb镀层表2Meniscograph测试条件有所劣化之外,其它含铜率不同的Sn-Cu焊料镀层的润湿性劣化程度很小,堪称Sn-Cu焊料镀层润湿性优秀。
(6)抑制金属须晶
在铜质的封装引线框架上分别电镀有含Cu为1、2和4wt%的Sn-Cu镀层,并将它们置入50℃的恒温槽中存放3个月。作为对比的样品,它是在引线框架上电镀有Sn镀层,也上搂按上述条件存放3个月。事后观察各个电镀层发现,作为对比样品的Sn镀层上有明显的针状金属须晶出现,然而种含Cu率的Sn-Cu镀层上却无针状金属须晶。
(7)加工性良好
IC封装引线上的焊料镀层,必须具备柔韧性。因为,引线需要弯曲加工成形,若引线上的焊料镀层缺乏柔韧性,弯曲加工时引起镀层出裂纹并在裂纹处发生基底氧化,从而降低焊接可靠性。为此,曾在0.5mm厚铜板上和42Alloy板上电镀10μm厚的Sn-1wt%cu镀层,按照JIS规格H8504进行弯曲实验,结果良好。在铜板和42Alloy板上的镀层,并未发生裂纹,证实加工性良好。
(8)不污染流焊槽
通常,电子元器件焊接都是采取使用焊料槽的流焊焊接法,焊接过程中由印刷电路板上有Cu溶入并且镀层中的成份也溶入到流焊槽内,形成污染。关于有Cu溶入焊料槽内的问题,如像Sn-Pb焊料槽内有Cu也关系不大,因为已有清除Cu的实用技术。但是,Cu以外的异种金属混入焊料糟时,可能导致流焊特性劣化。为此,日本上村工业公司曾进行过专门研究,该公司开发的Sn-Cu电镀技术和现有的无铅焊料(如像Sn-0.7Cu、Sn-3.5Ag-0.75Cu和Sn-2.5Ag-0.7Cu-1Bi)技术相容,不会对流焊槽造成污染。
(9)在阳极上无铜沉积
锡Sn阳极之类的可溶性阳极,通常是设置在电解槽里。当它浸渍在电解液中的情况下,连不通电流时不出现金属置换沉积现象,保持电解液中的金属浓度不变是最重要的。但是,以往的电镀工艺中,几乎不能保证这样一点。此次日本上村工业公司公布的利用Soft Alloy GTC电解液的Sn-Cu电镀技术,却能保证在阳极无Cu置换沉积现象,而且通过对比实验获得证实。该对比实验情况如下:试验用阳极是Sn阳极,作为对比实验用电解液分别是Sn-1wt%Cu、Sn-3.5wt%Ag和Sn-5wt%Bi(均是强酸性电解液),试验用样品电解液是Soft AlloyGTC-20型So-Cu电解液,实验时把Sn阳极投入各个电解液中呈浸渍状态并在常温下放置24小时。对比实验结果表明,浸渍在Sn-1wt%Cu、Sn-3.5wt%Ag和Sn-Swt%Bi电解液中的各Sn阳极,其表面分别都有Cu、Ag和Bi金属沉积,各电解液中的金属浓度都发生变化;然而,浸渍在Soft Alloy GTC-20型Sn-Cu电解液中的Sn阳极上却无Cu沉积,电解液中的金属浓度保持不变。这是Soft AlloyGTC-20电解液的独到特点。
(10)作业性良好且成本低廉
在强酸性的Sn-Cu、Sn-Ag和Sn-Si电解液里,使用可溶性阳极时在其表面上会置换沉积出Cu或Ag或者Bi金属。因此,这些电解液中的金属比率的平衡遭到破坏,电镀层的合金比率管理很困难,与此同时还必须维护电镀用阳极,如像清除阳极上置换出来的金属等都是很麻烦的作业。若用不溶性Pt/Ti板等不溶性阳极时,需要补充药液费等导致生产成本大增。这正是无铅焊料电镀比以往的Sn-Pb焊料电镀在作业性和生产成本方面增加负担的原因。
日本上村工业公司开发的Soft Alloy GTC-20型sn-Cu电解液,消除了以往无铅焊料电镀术的难题;这种Sn-Cu电镀技术,确实具备电镀作业性良好和成本低廉的优点。
射频工程师养成培训教程套装,助您快速成为一名优秀射频工程师...
天线设计工程师培训课程套装,资深专家授课,让天线设计不再难...
上一篇:电镀双极性现象及应对措施
下一篇:双面板PCB抄板方法