- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
通过工艺优化消除PCB沉银层缺陷
一、调查
本调查共有93家厂商(包括64家PWB制造厂商和29家装配厂商)参与,根据他们的反馈,造成缺陷或报废有6个主要的原因:贾凡尼效应、腐蚀、露铜、离子污染、微空洞、可焊性
很明显,因为印制线路板完成装配后不能重工,所以因微空洞而报废所造成的成本损失最高。虽然其中有八个PWB 制造厂商因为客户退件而注意到了该缺陷,但是此类缺陷主要还是由装配厂商提出。
可焊性问题根本没有被PWB制造厂商报告过,只有三家装配厂商误将发生在内部有大散热槽/面的高纵横比(HAR) 厚板上的”缩锡”问题(是指在波峰焊后焊锡只填充到孔深度的一半)归咎于沉银层。经由原始设备商(OEM)针对此问题更深入的研究验证,此问题完全是由于线路板设计所产生的可焊性问题,与沉银工艺或其他最终表面处理方式无关。
二、根本原因分析
通过对造成缺陷的根本原因分析,可经由工艺改善和参数优化相结合的方式将这些缺陷率降到最低。
贾凡尼效应通常出现在阻焊膜和铜面之间的裂缝下。在沉银过程中,因为裂缝的缝隙非常小,限制了沉银液对此处的银离子供应,但是此处的铜可以被腐蚀为铜离子,然后在裂缝外的铜表面上发生沉银反应。因为离子转换是沉银反应的源动力,所以裂缝下铜面受攻击程度与沉银厚度直接相关。
2Ag+ + 1Cu = 2 Ag + 1Cu++ (+ 是失去一个电子的金属离子)
下面任何一个原因都会形成裂缝:侧蚀/显影过度或阻焊膜与铜面结合不好;不均匀的电镀铜层(孔口薄铜处);阻焊膜下基材铜上有明显的深刮痕。
腐蚀 是由于空气中的硫或氧与金属表面反应而产生的。银与硫反应会在表面生成一层黄色的硫化银(Ag2S)膜,若硫含量较高,硫化银膜最终会转变成黑色。银被硫污染有几个途径,空气(如前所述)或其他污染源,如PWB包装纸。银与氧的反应则是另外一种过程,通常是氧和银层下的铜发生反应,生成深褐色的氧化亚铜。这种缺陷通常是因为沉银速度非常快,形成低密度的沉银层,使得银层低部的铜容易与空气接触,因此铜就会和空气中的氧产生反应。疏松的晶体结构的晶粒间空隙较大,因而需要更厚的沉银层才能达到抗氧化。这意味着生产中要沉积更厚的银层从而增加了生产成本,也增加了可焊性出现问题的机率,如微空洞和焊接不良。
露铜 通常与沉银前的化学工序有关。这种缺陷在沉银工艺后显现,主要是因为前制程未完全去除的残留膜阻碍了银层的沉积而产生的。最常见的是由阻焊工艺带来的残留膜,它是在显影液中显影未净所致, 也就是所谓的“残膜”,这层残膜阻碍了沉银反应。机械处理过程也是产生露铜的原因之一,线路板的表面结构会影响板面与溶液接触的均匀程度,溶液循环不足或过多同样会形成不均匀的沉银层。
离子污染 线路板表面存在的离子物质会干扰线路板的电性能。这些离子主要来自沉银液本身(残存在沉银层或在阻焊膜下)。不同沉银溶液离子含量不同,离子含量越高的溶液,在同样的水洗条件下,离子污染值越高。沉银层的孔隙度也是影响离子污染的重要因素之一,孔隙度高的银层容易残存溶液中的离子,使得水洗的难度增大,最终会导致离子污染值的相应升高。后水洗效果同样会直接影响离子污染,水洗不充分或水质不合格都会引起离子污染超标。
微空洞 通常直径小于1mil,位于焊料和焊接面之间的金属界面化合物之上的空洞被称为微空洞,因为它实际上是焊接面的“平面空泡群”,所以极大的减小了焊接结合力。OSP、ENIG以及沉银表面都会出现微空洞,其形成的根本原因尚未明确,但已确认了几个影响因素。尽管沉银层的所有微空洞都发生在厚银(厚度超过15μm)表面,但并非所有的厚银层都会发生微空洞。当沉银层底部的铜表面结构非常粗糙时更容易产生微空洞。微空洞的发生似乎也与共沉积在银层中的有机物的种类及成分有关。针对以上所述之现象,原始设备厂商(OEM)、设备生产服务商(EMS)、PWB制造厂商以及化学品供应商进行了数个模拟条件下焊接研究,但没有一个能够彻底消除微空洞。
射频工程师养成培训教程套装,助您快速成为一名优秀射频工程师...
天线设计工程师培训课程套装,资深专家授课,让天线设计不再难...
上一篇:如何提高电镀的BONDING能力
下一篇:无卤基材PCB的特点及实践生产