- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
WIFI收发器的接地和电源设计(三)
三:通过适当的电源旁路和接地来抑制PLL杂散信号
满足802.11a/b/g系统发送频谱模板的要求是设计过程中的一个难点,必须对线性指标和功耗进行平衡,并留出一定裕量,确保在维持足够的发射功率的前提下符合IEEE和FCC规范。IEEE 802.11g系统在天线端所要求的典型输出功率为+15dBm,频率偏差20MHz时为-28dBr。频带内相邻信道的功率抑制比(ACPR)是器件线性特性的函数,这在一定前提下、对于特定的应用是正确的。在发送通道优化ACPR特性的大量工作是凭借经验对Tx IC和PA的偏置进行调节,并对PA的输入级、输出级和中间级的匹配网络进行调谐实现的。
然而,并非所有引发ACPR的问题都归咎于器件的线性特性,一个很好的例证是:在经过一系列的调节、对功率放大器和PA驱动器(对ACPR起主要作用的两个因素)进行优化后,WLAN发送器的邻道特性还是无法达到预期的指标。这时,需要注意来自发送器锁相环本振(LO)的杂散信号同样会使ACPR性能变差。LO的杂散信号会与被调制的基带信号混频,混频后的成分将沿着预期的信号通道进行放大。这一混频效应只有在PLL杂散成分高于一定门限时才会产生问题,低于一定门限时,ACPR将主要受PA非线性的制约。当Tx输出功率和频谱模板特性是“线性受限”时,我们需要对线性指标和输出功率进行平衡;如果LO杂散特性成为制约ACPR性能的主要因素时,我们所面临的将是“杂散受限”,需要在指定的POUT下将PA偏置在更高的工作点,减弱它对ACPR的影响,这将消耗更大的电流,限制设计的灵活性。
上述讨论提出了另外一个问题,即如何有效地将PLL杂散成分限制在一定的范围内,使其不对发射频谱产生影响。一旦发现了杂散成分,首先想到的方案就是将PLL环路滤波器的带宽变窄,以便衰减杂散信号的幅度。这种方法在极少数的情况下是有效的,但它存在一些潜在问题。
图8给出了一种假设情况,假设设计中采用了一个具有20MHz相对频率的N分频合成器,如果环路滤波器是二阶的,截止频率为200kHz,滚降速率通常为40dB/十倍频程,在20MHz频点可以获得80dB的衰减。如果参考杂散成分为-40dBc (假设可以导致有害的调制分量的电平), 产生杂散的机制可能超出环路滤波器的作用范围(如果它是在滤波器之前产生的,其幅度可能非常大)。压缩环路滤波器的带宽将不会改善杂散特性,反而提高了PLL锁相时间,对系统产生明显的负面影响。
图8. 简化的PLL滤波器渐近线,相应的转角频率和杂散位置
经验证明,抑制PLL杂散的有效途径是合理的接地、电源布局和去耦技术,本文讨论的布线原则是减小PLL杂散分量的良好设计开端。考虑到电荷泵中存在较大的电流变化,采用星形拓扑非常必要。如果没有足够的隔离,电流脉冲产生的噪声会耦合到VCO电源,对VCO频率进行调制,通常称为“VCO牵引”。通过电源线间的物理间隔和每个VCC引脚的去耦电容、合理放置接地过孔、引入一个串联的铁氧体元件(作为最后一个手段)等措施可以提高隔离度。上述措施并不需要全部用在每个设计中,适当采用每种方式都会有效降低杂散幅度。
图9提供了一个由于不合理的VCO电源去耦方案所产生的结果,电源纹波表明正是电荷泵的开关效应导致电源线上的强干扰。值得庆幸的是,这种强干扰可以通过增加旁路电容得到有效抑制。图10显示的是在电路改变后,在同一点的测量结果。
图9. 不合理的VCC_VCO退耦测试结果
图10. 在VCO电源端增加旁路电容后减小了噪声。
另外,如果电源布线不合理,例如VCO的电源引线恰好位于电荷泵电源的下面,可以在VCO电源上观察到同样的噪声,所产生的杂散信号足以影响到ACPR特性,即使加强去耦,测试结果也不会得到改善。这种情况下,需要考察一下PCB布线,重新布置VCO的电源引线,将有效改善杂散特性,达到规范所要求的指标。
射频工程师养成培训教程套装,助您快速成为一名优秀射频工程师...
天线设计工程师培训课程套装,资深专家授课,让天线设计不再难...
上一篇:PCB飞针测试详细介绍
下一篇:柔性印制电路板的设计