• 易迪拓培训,专注于微波、射频、天线设计工程师的培养
首页 > 电子设计 > PCB设计 > PCB设计 > SMT中倒装芯片工艺介绍(下)

SMT中倒装芯片工艺介绍(下)

录入:edatop.com    点击:

  5、焊剂/拾装/再流
  完成晶片切割后,可将切分好的单个芯片留在晶片上,也可将其放置到华夫饼包装容器、凝胶容器、Surftape或带与轴封装中。倒装芯片布局设备必须具有处理带凸点的芯片的能力。华夫饼容器适应于小批量需求,或用于免测芯片;带与轴适用于SMT贴装设备;送至贴装设备的晶片较为普遍,且最适合大批量制造应用。
  实际的倒装芯片组装工艺由分配焊剂开始。分配焊剂的方法有多种,包括浸液、挤涂分配、模版印刷、或喷涂等。每一种方法都有其优点和应用范围。贴装设备上通常要装有焊剂或粘接胶浸润组件。这种方法具备将焊剂固定到芯片凸点上的优点。
  控制焊剂膜的高度和盘的旋转速度对批量生产的可重复性十分必要。焊剂分配工艺必须精确控制焊剂的分配量与可重复性。模版印刷焊剂适用于大批量制造,但对逆流设备的要求较高。不管采用哪一种方法,在粘贴倒装芯片器件时都必须考虑材料的特性和所用焊剂的兼容性。
  完成焊剂分配工艺后就可以采用多头高速元件拾装系统或超高精度拾装系统拾取芯片了。为了促进半导体后端制造与EMS组装市场的结合,目前的拾装设备,如西门子SiPlaceHF新型设备都具有较高的速度与精度。倒装芯片与电路板对准由高精度摄像机完成。
  拾装工艺的关键参数包括元件的适当拾取、定位精度与可靠性、贴装的力度大小、停留时间和成品率等。倒装芯片拾装精度通常要求在凸点节距的10%左右,以最大限度地减小平移偏移和旋转偏移。许多公司已在不同板条件下对各种工艺参数进行了广泛的研究和探讨,包括芯片尺寸、凸点节距、凸点高度和每个芯片上的凸点数量等。
  拾装设备上所用的喷嘴类型是根据芯片尺寸与/或凸点引脚(全阵列与环形阵列)等因素而决定的。将分好的晶片中的芯片拾取,面朝下放好,贴到电路板上。如果喷嘴的硬度和一致性都正常的话就不会对凸点和芯片造成损坏。将芯片翻动,拾取,对准并贴装。
  为了避免已装置好的芯片在再流工艺前发生移动,操作时应倍加小心。因此,再流工艺通常在直排的多级连续炉中采用对流、红外加热、或传导加热(强热对流)进行。在任何一种情况下都必须严格控制炉内气氛和温度分布,以确保可靠的再流焊点。主要的影响参数包括液化、峰值温度、斜坡速率、吸收时间、吸收温度、冷却速率与对流速率等。精确的分布(即,在芯片下放置热电偶)具有十分重要的作用,因为这样可以防止基板退化、焊膏不足和焊膏起球等现象。此外,焊剂的一致性、焊剂的活化以及均匀的热传递都是十分关键的参数。
  6、底部填充
  焊膏再流工艺之后要使用底部填料以实现芯片与电路板的耦合,从而极大地提高互连的完整性与可靠性。最常用的技术就是在焊膏再流之后分配底部填料。但有一些应用也采用芯片粘贴之前分配不流动的底部填料或在电路板上印刷,并在焊膏再流期间进行固化。
  要想顺利地完成底部填料工艺就必须考虑一些重要的参数,如底部填充材料的特性与兼容性(适当地Tg、CTE和模件等)、分配量、分配形式、板的温度与底部填充流动的机理等。利用毛细作用的传统的底部填充流动主要取决于芯片的尺寸和外形、凸点的式样、间隔大小、填充材料的黏度、芯片与板的表面张力、以及填充材料的润湿角等。
  针的尺寸、离芯片边缘的分配距离、针距板的高度和分配的速度也是必须了解并加以控制的重要参数。此外,在填充工艺期间控制板的温度可以提高毛细管的流动,同时还可避免先期凝胶。
  要确保高可靠的倒装芯片组装就必须充分了解材料的流动特性,避免气孔或分层(采用C模式扫描声学显微镜可以看出)。湿气与/或温度循环会引起填充材料与芯片或基板的分层,而一旦产生分层就有可能造成高应力集中,并导致焊点的预先失效。
  底部填充材料的固化工艺可在连续直排炉或间歇炉中完成。控制温度的一致性、固化时间、以及炉内的气氛条件,充分实现底部填料所具有的优点是十分重要的。

射频工程师养成培训教程套装,助您快速成为一名优秀射频工程师...

天线设计工程师培训课程套装,资深专家授课,让天线设计不再难...

上一篇:PCB热风焊料平整(HASL)工艺的优劣探讨
下一篇:PCB设计中原理 常见错误分析

射频和天线工程师培训课程详情>>

  网站地图