• 易迪拓培训,专注于微波、射频、天线设计工程师的培养
首页 > 电子设计 > PCB设计 > PCB设计 > PCB设计的时域串扰测量法

PCB设计的时域串扰测量法

录入:edatop.com    点击:

  随着通讯、视讯、网络和计算机技术领域中数字系统的执行速度日益加速,对此类系统中的印刷电路板(PCB)的质量要求也越来越高。早期的PCB设计在面临讯号频率日益增高和脉冲上升时间日益缩短的情况下,已无法保证系统性能和工作要求。在目前的PCB设计中,我们必须利用传输线理论对PCB及其组件(边缘连接器、微带线和零组件插座)进行建模。只有充分了解PCB上串扰产生的形式、机制和后果,并采用相应技术最大程度地加以抑制,才能帮助我们提高包含PCB在内的系统的可靠性。本文主要围绕PCB设计展开,但相信文中所讨论的内容也有助于电缆和连接器的表征等其它应用场合使用。
  PCB设计师之所以关心串扰这一现象,是因为串扰可能造成以下性能方面的问题:噪音电平升高;有害尖峰突波;数据边沿抖动;意外的讯号反射。
  这几个问题中哪些会对PCB设计有所影响取决于多方面因素,如板上所用逻辑电路的特性、电路板的设计、串扰的模式(反向或前向)以及干扰线和被干扰线两边的端接情况。本文提供的信息可协助读者加深对串扰的认识和研究,减少串扰对设计影响。本文讨论了串扰的组成,并向读者展示了如何利用Tektronix的TDS8000B系列采样示波器或CSA8000B系列通讯讯号分析仪来测量单面PCB板上的串扰。
  为了尽可能减少PCB设计中的串扰,我们必须在容抗和感抗之间寻找平衡点,力求达到额定阻抗值,因为PCB的可制造性要求传输线阻抗得到良好控制。在电路板设计完成之后,板上的组件、连接器和端接方式决定了哪种类型的串扰会对电路性能产生多大的影响。利用时域测量方法,透过计算拐点频率和理解PCB串扰(Crosstalk-on-PCB)模型,可以帮助设计人员设置串扰分析的边界范围。
  时域测量方法
  为了测量与分析串扰,可采用频域技术观察频谱中频率的谐波分量与这些谐波频率上EMI最大值之间的关系。不过,对数字讯号边沿(从讯号电平的10%上升到90%所用的时间)进行时域测量也是测量与分析串扰的一种方法,而且时域测量还有以下优点:数字讯号边沿的变化速度,或者说上升时间,直接展现了讯号中每个频率成分有多高。因此,由讯号边沿定义的讯号速度(即上升时间)也能够帮助揭示串扰的机制。而上升时间可直接用于计算拐点频率。本文将使用上升时间测量方法对串扰进行阐述和测量。
  为保证一个数字系统能可靠工作,设计人员必须研究并验证电路设计在拐点频率以下的性能。对数字讯号的频域分析显示,高于拐点频率的讯号会被衰减,不会对串扰产生实质影响,而低于拐点频率的讯号所包含的能量足以影响电路工作。拐点频率透过下式计算:
  fknee = 0.5/ trise
  PCB串扰模型
  本节提供的模型为不同形式串扰的研究提供了一个平台,并阐明了两条微带线之间的互阻抗是如何在PCB上造成串扰的。互阻抗沿着两条走线呈均匀分布。串扰在数字闸电路向串扰线打出上升沿时产生,并沿着走线进行传播:
  1. 互电容Cm和互电感Lm都会向相邻的被干扰在线耦合或‘串扰’一个电压。
  2. 串扰电压以宽度等于干扰在线脉冲上升时间的窄脉冲形式出现在被干扰在线。
  3 在被干扰在线,串扰脉冲一分为二,然后开始向两个相反的方向传播。这就将串扰分成了两部份:沿原干扰脉冲传播方向传播的前向串扰和沿相反方向向讯号源传播的反向串扰。
  串扰类型与耦合机制
  根据前面讨论的模型,下面将介绍串扰的耦合机制,并讨论前向和反向这两种串扰类型。
  电容耦合机制。是电路中的电容引起的干扰机制,包括有:干扰在线的脉冲到达电容时,会透过电容向被干扰在线耦合一个窄脉冲;该耦合脉冲的振幅由互电容的大小决定;然后,耦合脉冲一分为二,并开始沿被干扰线向两个相反的方向传播。
  电感或变压器耦合机制。是电路中的电感所引起的干扰,包括:在干扰在线传播的脉冲将对呈现电流尖峰的下个位置进行充电;这种电流尖峰会产生磁场,然后在被干扰在线感应出电流尖峰来;变压器会在被干扰在线产生两个极性相反的电压尖峰(负尖峰按前向传播,正尖峰按反向传播)。
  反向串扰。上述模型导致的电容和电感耦合串扰电压会在被干扰线的串扰位置产生累加效应。所导致的反向串扰包含以下特性:反向串扰是两个相同极性脉冲之和;由于串扰位置随干扰脉冲边沿传播,反向干扰在被干扰线源端呈现为低电平、宽脉冲讯号,并且其宽度与走线长度存在对应关系;反射串扰振幅独立于干扰线脉冲上升时间,但取决于互阻抗值。
  前向串扰。需要重申的是,电容和电感耦合式串扰电压会在被干扰线的串扰位置累加。前向串扰包括以下一些特性:前向串扰是两个反极脉冲之和。因为极性相反,因此结果取决于电容和电感的相对值;前向串扰在被干扰线的末端呈现为宽度等于干扰脉冲上升时间的窄尖峰;前向串扰取决于干扰脉冲的上升时间。上升沿越快,振幅越高,宽度就越窄;前向串扰振幅还取决于线对长度:随着串扰位置随干扰脉冲边沿的传播,被干扰在线的前向串扰脉冲将获得更多的能量。
  串扰的表征
  本节将透过几个单层PCB上的测量实例来研究串扰的产生机制和前面介绍的几种串扰类型。
  仪器设置。为了在实验室中有效地测量串扰,应该使用测量带宽为20GHz的宽带示波器,并透过一个高质量脉冲产生器输出一个上升时间等于示波器上升时间的脉冲驱动被测电路。同时采用高质量电缆、端接电阻和配接器连接被测PCB。
  Tektronix 8000B系列仪器中安装有80E04电子采样模块,是测量串扰的仪器组合。80E04是一款双信道采样模块,包含一个TDR阶跃电压产生器,能产生上升时间为17ps的250mv窄脉冲,并以50奥姆的源阻抗输出。测试人员只需连接待测PCB即可。
  前向串扰测量。如果只是测量前向串扰,需将所有走线进行端接以消除反射。前向串扰应在良好端接的被干扰线的末端测量。
  如果互电感比互电容耦合的串扰大,那么在干扰脉冲的上升沿处串扰脉冲应为负,宽度等于干扰脉冲的上升时间。图中仪器显示的就是一个振幅为48.45mV的负脉冲(C4)。干扰脉冲振幅为250mV,而串扰振幅将近50mV,因此该干扰脉冲的快速边沿在被干扰在线产生了20%的串扰。
  由于测量时来自80E04的输入阶跃电压具有非常快的边沿,因而得到的串扰过大,并不能代表实际逻辑电路中的驱动讯号。例如,如果驱动讯号来自一个1.5ns的CMOS闸,产生的串扰脉冲就更宽,振幅也更小。要使测量能够展现出这种情况,可利用仪器的定义算法(Define Math)功能在讯号撷取之后增加一个低通滤波器。图7中的M1波形(白色)给出的就是经滤波后的测量结果。需要注意的是M1在垂直方向比未经滤波的波形敏感10倍。

射频工程师养成培训教程套装,助您快速成为一名优秀射频工程师...

天线设计工程师培训课程套装,资深专家授课,让天线设计不再难...

上一篇:PCB电路版 设计常见问题解答
下一篇:如何做好三层核心路由交换机交换板的pcb抄板方案

射频和天线工程师培训课程详情>>

  网站地图