• 易迪拓培训,专注于微波、射频、天线设计工程师的培养
首页 > 电子设计 > EMC/EMI 设计 > 电磁兼容EMC > 博客精选:压力引入突发噪声,陶瓷电容器的颤噪

博客精选:压力引入突发噪声,陶瓷电容器的颤噪

录入:edatop.com    点击:

陶瓷电容器的颤噪

图1:轻敲PCB产生的电路输出


图1中显示的7个输出电压中的尖峰是我轻敲PCB的结果。很多与PCB的物理相互作用会导致电路输出的变化。例如,按压运算放大器的封装会改变其偏移电压。然而,这个电路对振动非常敏感,而运算放大器通常并未显示出这样的灵敏度水平。将这一点考虑在内后,我将注意力转移到PCB上的陶瓷电容器。

多层陶瓷电容器非常有用。他们提供低等效串联电阻 (ESR) 与等效串联电感 (ESL),以及大容积效率的独特组合。如图2所示,他们的结构是陶瓷电介质材料内的多层金属电极。

陶瓷电容器的颤噪

图2:多层陶瓷电容器的物理结构


钛酸钡 (BaTiO3) 常常被用在陶瓷电容器的电介质中,其原因是这种物质具有大于3000的相对电容率。通常情况下,当你缩小陶瓷电容器的物理尺寸时,电容值的增加就要求在电介质中使用更大量的BaTiO3。撇开高电容率不说,BaTiO3具有另外一个有意思的特性:就是他的高压电属性。这使其成为压电麦克风和吉他拾音器的理想选择!

压电效应是施加机械压力时电压产生的过程。图3显示,一个陶瓷电容器被焊接在PCB上。当向下按压时(红色箭头),PCB变形,使得电介质伸长或被端帽压缩(蓝色箭头)。当我轻敲PCB时,我在陶瓷电容器上施加了一个机械压力,导致电介质中的压电响应,并产生输出电压。

陶瓷电容器的颤噪

图3:PCB上的机械压力通过电容器端帽连接至电介质


压电是安装在高振动环境中的电子元器件的主要问题。在此类应用中,对于高电容值,低ESR和ESL,以及小外形尺寸的需要有可能使工程师选择一款高K陶瓷电容器(X7R,Y5V,Z5U等)。此类电容器包含高含量的BaTiO3 。一个常见示例就是放置在ADC基准输入上的电容器。此电路在没有剧烈抖动的实验室环境中运转良好。一旦被安装在振动环境中,ADC读数有可能出现重大误差。电源设计人员也意识到逆压电效应,其中电容器上的纹波电压使其“小声哼唱”或抖动。

为了实现低噪声放大器电路,我选择研究几款不同的方案来解决这个问题:

软端接陶瓷电容器:这些电容器是端帽内有柔软且富有弹性物质来减缓压力的陶瓷电容器。他们曾被用在汽车应用中,在此类应用中,PCB弯曲会导致电容器故障。

钽电容器:据报道,钽电容器未表现出颤噪效应。然而,他们也有某些缺陷。他们会被极化,并且通常比外形尺寸和电容值相似的陶瓷电容器具有更高的ESR和ESL。

薄膜电容器:某些客户已经表示,在高抖动环境中使用薄膜电容器可以获得令人满意的结果。不好的一面是薄膜电容器通常比陶瓷或钽电容器大,价格也高很多。

这些解决方案是组件级的,其中并不包括对PCB的可能更改,诸如应力消除断流器。在下一篇博文中,我将在同一电路中测试每一款电容器,并且比较他们对抖动的敏感性。

相关阅读:

高速PCB设计指南(3):高速数字系统的串音控制
瞅准PCB市场时机,各厂商均"扩充粮草",你瞅准没?
高速PCB设计指南(2):信号隔离技术

EMC电磁兼容设计培训套装,视频教程,让您系统学习EMC知识...

射频工程师养成培训教程套装,助您快速成为一名优秀射频工程师...

上一篇:众专家揭开智能时代的PCB设计的神秘面纱
下一篇:高速PCB设计指南(8):如何掌握IC封装的特性

EMC培训课程推荐详情>>

EMC电磁兼容视频培训教程EMC 电磁兼容设计专业培训视频套装,3门视频教程,让你系统学习电磁兼容知识和应用【More..

易迪拓培训课程列表详情>>

我们是来自于研发一线的资深工程师,专注并致力于射频、微波和天线设计工程师的培养

  网站地图