• 易迪拓培训,专注于微波、射频、天线设计工程师的培养
首页 > 电子设计 > EMC/EMI 设计 > 电磁兼容EMC > 如何在电路板阶段就进行EMI处理

如何在电路板阶段就进行EMI处理

录入:edatop.com    点击:

现如今各类电子产品都向着小体积集成化发展,小体积为人们带来方便携带的便利,同时也将EMI电磁干扰的问题重新推到了设计者面前。小体积的产品通常都面对着更加棘手的EMI问题,因此与传统产品对于EMI的预防也不禁相同,本文将为大家介绍从电路板设计上来对EMI进行控制需要注意的点。

数字电路PCB的EMI控制技术

在处理各种形式的EMI时,必须具体问题具体分析。在数字电路的PCB设计中,可以从下列几个方面进行EMI控制。

器件选型

在进行EMI设计时,首先要考虑选用器件的速率。任何电路如果把上升时间为5ns的器件换成上升时间为2.5ns的器件,EMI会提高约4倍。EMI的辐射强度与频率的平方成正比,最高EMI频率(fknee)也称为EMI发射带宽,它是信号上升时间而不是信号频率的函数:fknee =0.35/Tr(其中Tr为器件的信号上升时间)。

这种辐射型EMI的频率范围为30MHz到几个GHz,在这个频段上,波长很短,电路板上即使非常短的布线也可能成为发射天线。当EMI较高时,电路容易丧失正常的功能。因此,在器件选型上,在保证电路性能要求的前提下,应尽量使用低速芯片,采用合适的驱动/接收电路。另外,由于器件的引线管脚都具有寄生电感和寄生电容,因此在高速设计中,器件封装形式对信号的影响也是不可忽视的,因为它也是产生EMI辐射的重要因素。一般地,贴片器件的寄生参数小于插装器件,BGA封装的寄生参数小于QFP封装。

连接器的选择与信号端子定义

连接器是高速信号传输的关键环节,也是易产生EMI的薄弱环节。在连接器的端子设计上可多安排地针,减小信号与地的间距,减小连接器中产生辐射的有效信号环路面积,提供低阻抗回流通路。必要时,要考虑将一些关键信号用地针隔离。

叠层设计

在成本许可的前提下,增加地线层数量,将信号层紧邻地平面层可以减少EMI辐射。对于高速PCB,电源层和地线层紧邻耦合,可降低电源阻抗,从而降低EMI。

[p]

布局

根据信号电流流向,进行合理的布局,可减小信号间的干扰。合理布局是控制EMI的关键。布局的基本原则是:

模拟信号易受数字信号的干扰,模拟电路应与数字电路隔开;

时钟线是主要的干扰和辐射源,要远离敏感电路,并使时钟走线最短;

大电流、大功耗电路尽量避免布置在板中心区域,同时应考虑散热和辐射的影响;

连接器尽量安排在板的一边,并远离高频电路;

输入/输出电路靠近相应连接器,去耦电容靠近相应电源管脚;

充分考虑布局对电源分割的可行性,多电源器件要跨在电源分割区域边界布放,以有效降低平面分割对EMI的影响;

回流平面(路径)不分割。

布线

阻抗控制:高速信号线会呈现传输线的特性,需要进行阻抗控制,以避免信号的反射、过冲和振铃,降低EMI辐射。

将信号进行分类,按照不同信号(模拟信号、时钟信号、I/O信号、总线、电源等)的EMI辐射强度及敏感程度,使干扰源与敏感系统尽可能分离,减小耦合。

严格控制时钟信号(特别是高速时钟信号)的走线长度、过孔数、跨分割区、端接、布线层、回流路径等。

信号环路,即信号流出至信号流入形成的回路,是PCB设计中EMI控制的关键,在布线时必须加以控制。要了解每一关键信号的流向,对于关键信号要靠近回流路径布线,确保其环路面积最小。

对低频信号,要使电流流经电阻最小的路径;对高频信号,要使高频电流流经电感最小的路径,而非电阻最小的路径(见图1)。对于差模辐射,EMI辐射强度(E)正比于电流、电流环路的面积以及频率的平方。(其中I是电流、A是环路面积、f是频率、r是到环路中心的距离,k为常数。)

因此当最小电感回流路径恰好在信号导线下面时,可以减小电流环路面积,从而减少EMI辐射能量。

关键信号不得跨越分割区域;

高速差分信号走线尽可能采用紧耦合方式;

确保带状线、微带线及其参考平面符合要求;

去耦电容的引出线应短而宽;

所有信号走线应尽量远离板边缘;

1-1
图1信号环路

对于多点连接网络,选择合适的拓扑结构,以减小信号反射,降低EMI辐射。

电源平面的分割处理;

电源层的分割

在一个主电源平面上有一个或多个子电源时,要保证各电源区域的连贯性及足够的铜箔宽度。分割线不必太宽,一般为20~50mil线宽即可,以减少缝隙辐射。

地线层的分割

地平面层应保持完整性,避免分割。若必须分割,要区分数字地、模拟地和噪声地,并在出口处通过一个公共接地点与外部地相连。为了减小电源的边缘辐射,电源/地平面应遵循20H设计原则,即地平面尺寸比电源平面尺寸大20H(见图2),这样边缘场辐射强度可下降70%。

1-2
图2 20H原则示意图

在电路板设计阶段就对EMI处理进行设计是一个非常明智的选择,其能够为EMI的抑制起到非常重要的作用。如果能在电路板阶段处理好PCB的EMI的问题,对于整体的电磁干扰抑制有着非常大的好处,同时在电路板阶段进行电磁干扰处理也是一种最为低成本有效地方法,希望大家在看过本文之后能更近一步了解其中的知识点。 

EMC电磁兼容设计培训套装,视频教程,让您系统学习EMC知识...

射频工程师养成培训教程套装,助您快速成为一名优秀射频工程师...

上一篇:对症下药 八种EMI传导干扰应对方案
下一篇:设计技巧 如何控制多层电路当中的EMI

EMC培训课程推荐详情>>

EMC电磁兼容视频培训教程EMC 电磁兼容设计专业培训视频套装,3门视频教程,让你系统学习电磁兼容知识和应用【More..

易迪拓培训课程列表详情>>

我们是来自于研发一线的资深工程师,专注并致力于射频、微波和天线设计工程师的培养

  网站地图