• 易迪拓培训,专注于微波、射频、天线设计工程师的培养
首页 > 电子设计 > EMC/EMI 设计 > 电磁兼容EMC > 电磁干扰可能传播的路径的设计方法(一)

电磁干扰可能传播的路径的设计方法(一)

录入:edatop.com    点击:

当两个电路存在公共阻抗时,一个电路的电参数通过公共阻抗对另一个电路的电参数产生了影响。而这种影响造成误动作时,即为通过电路性耦合的路径产生的电磁干扰。公共阻抗主要有共回路导线、共地阻抗和共电源内阻。

电路性耦合的电磁兼容设计方法是:
   
     1)对共电源内阻产生的电磁干扰,可以用不同的电源分别供电的方法,以去除共电源内阻产生的电路性耦合。
   
     2)对共回路导线产生的电磁干扰,可以用对导线阻抗加以限制或去耦的方法,以减低共回路导线产生的电路性耦合。共回路导线的阻抗包括电阻和电感。
   
     限制电阻的方法增大共回路导线的截面、减小共回路导线的长度和降低接触电阻;
   

限制电感的方法减小共回路导线的长度和来回线的距离;

电路去耦的方法去掉共回路导线,而将不同的回路仅在一点连接。
   
     3)对共地阻抗产生的电磁干扰,可以用降低共地阻抗的方法,以去除共地阻抗产生的电路性耦合。

接地的种类和作用
   
     电子设备一般有两种接地。一种是安全接地,即将机壳接地,当机壳带电时,电源的保护动作,切断电源,以保护工作人员的安全;另一种是工作接地,给电路系统提供一个基准电位,同时也可将高频干扰引走。但是,不正确的工作接地反而会增加干扰,比如共地线干扰,地环路干扰等等。
   
     工作接地按工作频率采用不同的接地方式。工作频率低的(小于1MHz)采用单点接地式,即把整个电路系统中的一个结构点看作接地参考点,所有对地连接都接到这一点上,并设置一个安全接地螺栓;工作频率高的(大于30MHz)采用多点接地式,即在该电路系统里,用一块接地平板代替电路中每部分各自的地回路。其主要原因是接地引线的感抗与频率和长度成正比,工作频率高时将增加共地阻抗,从而将增大共地阻抗产生的电磁干扰。工作频率在上述两者之间的可采用混合接地式。
   
     此外,还有一种浮地式,即该电路的地与大地无导体连接。其优点是该电路不受大地电性能的影响。其缺点是该电路易受寄生电容的影响,而使该电路的地电位变动和增加了对模拟电路的感应干扰。

对接地电阻的要求
   
     接地电阻越小越好。因为当有电流流过接地电阻时,其上产生的电压,将产生共地阻抗的电磁干扰。另外,该电压不仅使设备受到反击过电压的影响,而且使操作人员受到电击伤害的威胁。因此,一般要求接地电阻小于4Ω。
   
     接地电阻由接地线电阻、接触电阻和地电阻组成。为此降低接地电阻的方法有以下三种:

[p]      一是降低接地线电阻,为此要用总截面大和长度小的多股细导线。
   
     二是降低接触电阻,为此要将接地线与接地螺栓和接地极作紧密又牢靠地连接,并要增加接地极和土壤之间的面积与接触的紧密度。
   
     三是降低地电阻,为此要增加接地极的表面积和增加土壤的电导率(如在土壤中注入盐水)。

低频电路
   
     工作频率低于1MHz的一个电路采用单点接地式,以防两点接地产生共地阻抗的电路性耦合。多个电路的单点接地式又分为串联并联两种,由于串联接地产生共地阻抗的电路性耦合,所以低频电路最好采用并联的单点接地式。
   
     为防止工频和其它杂散电流在信号地线上产生干扰,信号地线应与功率地线和机壳地线相绝缘。且只在功率地、机壳地和接往大地的接地线的安全接地螺栓上相连(浮地式除外)。
   
     地线的长度(L/m)与截面积(S/mm2)的关系为
      
     S>0.83L    (11)

高频电路地
   
     工作频率高于30MHz的电路采用多点接地式。因为接地引线感抗与频率和长度成正比,所以地线的长度要尽量短。多点接地时,尽量找最接近的低阻值接地面接地。

混合接地式
   
     工作频率介于1~30MHz的电路采用混合接地式。当接地线的长度小于工作信号波长的1/20时,采用单点接地式,否则采用多点接地式。

屏蔽地
   
     电路的屏蔽体,即用屏蔽材料将电磁辐射源屏蔽起来,并将屏蔽体接地,以降低电磁辐射的干扰。屏蔽体内的电路地线只能一点接屏蔽体,而不得利用屏蔽体作返回导体。

电缆的屏蔽层
   
     对于多层屏蔽电缆,每个屏蔽层应在一点接地,各屏蔽层应相互绝缘。
   
     当电缆长度大于工作信号波长的0.15倍时,采用间隔工作信号波长的0.15倍的多点接地式。如果不能实现,则至少应将屏蔽层两端接地。
   
     4)电位隔离
   
     电位隔离分为机械、电磁、光电和浮地几种隔离方式,其实质是人为地造成电的隔离,以阻止电路性耦合产生的电磁干扰。

机械隔离采用继电器来实现其线圈接收信号,机械触点发送信号。机械触点分断时,由于阻抗很大、电容很小,从而阻止了电路性耦合产生的电磁干扰。缺点是线圈工作频率低,不适合于工作频率较高的场合使用。而且存在触点通断时的弹跳和干扰以及接触电阻等。
  
     电磁隔离采用变压器来实现通过变压器传递电信号,阻止了电路性耦合产生的电磁干扰。对于交流的场合使用较为方便,由于变压器绕组间分布电容较大,所以使用时应当与屏蔽和接地相配合。

光电隔离采用光电耦合器来实现通过半导体发光二极管(LED)的光发射和光敏半导体(光敏电阻、光敏二极管、光敏三极管、光敏晶闸管等)的光接收,来实现信号的传递。光电耦合器的输入阻抗与一般干扰源的阻抗相比较小,因此分压在光电耦合器输入端的干扰电压较小,而且一般干扰源的内阻较大,它所能提供的电流并不大,因此不能使发光二极管发光。光电耦合器的外壳是密封的,它不受外部光的影响。光电耦合器的隔离电阻很大(约1012Ω),隔离电容很小(约数pF)能阻止电路性耦合产生的电磁干扰。只是光电耦合器的隔离阻抗随着频率的提高而降低,抗干扰效果也将降低。

浮地浮地可使功率地(强电地)和信号地(弱电地)之间的隔离电阻很大,所以能阻止共地阻抗电路性耦合产生的电磁干扰。

EMC电磁兼容设计培训套装,视频教程,让您系统学习EMC知识...

射频工程师养成培训教程套装,助您快速成为一名优秀射频工程师...

上一篇:EMI/EMC设计经典问题集(五)
下一篇:EMI/EMC设计经典问题集(一)

EMC培训课程推荐详情>>

EMC电磁兼容视频培训教程EMC 电磁兼容设计专业培训视频套装,3门视频教程,让你系统学习电磁兼容知识和应用【More..

易迪拓培训课程列表详情>>

我们是来自于研发一线的资深工程师,专注并致力于射频、微波和天线设计工程师的培养

  网站地图