• 易迪拓培训,专注于微波、射频、天线设计工程师的培养
首页 > 电子设计 > PCB设计 > PCB设计 > 电容的去耦时间对电源完整性的影响

电容的去耦时间对电源完整性的影响

录入:edatop.com    点击:

电容的去耦时间

在电源完整性设计一文中,推荐了一种基于目标阻抗(target impedance)的去耦电容设计方法。在这种方法中,从频域的角度说明了电容选择方法。把瞬态电流看成阶跃信号,因而有很宽的频谱,去耦电容必须在这个很宽的频谱内使电源系统阻抗低于目标阻抗(target impedance)。电容的选择是分频段设计的,每一种容值的电容负责一段频谱范围,超出这个范围的,由其他电容负责构成低阻抗路径。

有些人可能对这种频域方法有些困惑,本文从另外一个更直观的角度来说明去耦电容的这种特性,即电容的去耦时间。

构成电源系统的两个重要部分:稳压电源、去耦电容。首先说说稳压电源的反应时间。负载芯片的电流需求变化是极快的,尤其是一些高速处理器。内部晶体管开关速度极快,假设处理器内部有1000个晶体管同时发生状态翻转,转台转换时间是1ns,总电流需求是500mA。那么此时电源系统必须在1ns时间内迅速补充上500mA瞬态电流。遗憾的是,稳压源在这么短的时间内反应不过来,相对于电流的变化,稳压源显得很迟钝,有点像个傻子,呵呵。通常说的稳压源的频率响应范围在直流到几百k之间,什么意思?这从时域角度可能更好理解。假设稳压源的频率响应范围是直流到100kHz,100kHz对应时域的10us时间间隔。也就是稳压源最快的响应速度是10us,如果负载芯片要求在20 us内提供所需的电流,那么稳压电源有足够的反应时间,因此可以提供负载所需要的电流。但是如果负载电流要求的时间是1ns的话,对稳压电源来说太快了,稳压源还在那发呆呢,瞬态电流的需求已经过去了。负载可不会等着稳压源来做出反应,不能给它及时提供电流,他就把电压拉下来,想想,功率一定,电流大了,电压必然减小。哦,这就产生了轨道塌陷,噪声产生了。因此,所说的频率响应范围,在时域对应的是一个响应时间问题。

电容也同样存在响应时间。电源要10us才能反应过来,那从0到10us之间这段时间怎么办?这就是电容要干的事。按电源完整性设计一文中,加入一个31.831uF电容,能提供100kHz到1.6MHz频段的去耦。从时域来说,这个电容的最快反应时间是1/1.6MHz=0.625us。也就是说从0.625us到10us这段时间,这个电容就可以提供所需电流。稳压电源发呆就发呆吧,别指望它了,电容先顶上,过10us后再让稳压源把活接过来。从0.625us到10us这段时间就是电容的有效去耦时间。

加一个电容后,电源系统的反应时间还是很长,625ns,还是不能满足要求,那就再加电容,放一些很小的电容,比如13个0.22uF电容,提供1.6MHz到100MHz的去耦,那么这13个小电容最快反应时间为1/100MHz=1ns。如果有电流需求,1ns后这些小电容就做出反应了。

通常这个反应时间还不够,那就在加一些更小的电容,把去耦频率提到500MHz,反应时间可以加快到200ps,一般来说足够了。不同电容产生去耦作用,都需要一定的时间,这就是去耦时间。不同的去耦时间对应不同的有效去耦频率段,这就是为什么去耦电容要分频段设计的原因。

这里给出的是一个直观的解释,目的是让你有一个感性的理解。

有一点要特别注意,从信号的角度来说,瞬态电流有很宽的带宽,要想很好的满足电流需求,必须在他的整个带宽范围内都提供去耦,才能满足波形的要求。不要认为稳压源反应慢,就认为它没干活,这是不对的,稳压源对瞬态电流中的低频成分还是起作用的。电流由很多频率成分组成,稳压源、大电容、小电容、更小的电容分别负责补偿瞬态电流中不同频率的部分,这些作用合成在一起,才能产生一个类似阶跃信号的补偿电流。电源系统设计要物尽其用,稳压源、大电容、小电容、更小的电容各司其职,协同工作,这个团队能否很好的合作,就看你的管理能力了。

电源系统去耦设计要把引脚去耦和电源平面去耦结合使用已达到最优设计。时钟、PLL、DLL等去耦设计要使用引脚去耦,必要时还要加滤波网络,模拟电源部分还要使用磁珠等进行滤波。针对具体应用选择退耦电容的方法也很流行,如在电路板上发现某个频率的干扰较大,就要专门针对这一频率选择合适的电容,改进系统设计。总之,电源系统的设计和具体应用密切相关,不存在放之四海皆准的具体方案。关键是掌握基本的设计方法,具体情况具体分析,才能很好的解决电源去耦问题。

射频工程师养成培训教程套装,助您快速成为一名优秀射频工程师...

天线设计工程师培训课程套装,资深专家授课,让天线设计不再难...

上一篇:Orcad快捷键及库元件编号
下一篇:电源滤波电容的选取

射频和天线工程师培训课程详情>>

  网站地图