- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
智能天线的测试
第三,智能天线比其他天线增加了单元波束、广播波束和业务波束的概念。
单元波束是指智能天线阵列中任意馈电端口在其他所有端口都接匹配负载时发射或接收到的辐射方向图。对于智能天线来说,单元波束的指标要求与普通天线的要求区别不大,因此在此不进行重点介绍。
广播波束是指对智能天线阵列施加特定的幅度和相位激励所形成的全向覆盖或扇区覆盖的辐射方向图。
对于定向智能天线,广播波束可以分为30°、65°、90°和100°,分别对应于不同扇区的覆盖要求。对于全向智能天线,广播波束应为360°覆盖,因此对其圆度提出了相应的要求。
不同的天线厂商,由于工艺和设计方式不同,广播波束的幅相加权系数也有所区别,因此要求天线厂商提供不同广播波束相应的幅相加权系数。
业务波束是指对智能天线阵列施加特定的幅度和相位激励所形成的在工作角域内具有任意波束指向扫描以及具有高增益窄波束的方向图。
定向智能天线的第一种波束是指波束为天线端口输入等幅同相信号得到的波束,另一种为各列单元的激励幅度均匀且激励相位呈线性递增(差分相位规定为,其中:为工作频段的中心频点的波长、d为相邻列的水平方向间距、=60°)时所得到的增益。
对于全向智能天线的第一种波束,按照以下公式:
其中,i=1,2,……N,N=8(对于8列阵)。
计算出相应天线端口的幅度和相位,然后进行激励即可得到第一种波束,其中为每个工作频段的中心频点。
以增益测量为例,单元波束、业务波束和广播波束的测试均可以采用图3所示的测试框图。
图3 天线增益测试示意
测试条件如下。
(1)被测天线与源天线具有相同的极化方式。
(2)被测天线和源天线之间测量距离应满足
式中:L——源天线与被测天线距离(m),
D——被测天线最大尺寸(m),
d——源天线最大辐射尺寸(m),
——测试频率波长(m)。
(3)被测天线应安装于场强基本均匀的区域内,场强应预先用一个半波偶极天线在被测天线的有效天线体积内进行检测,如果电场变化超过1.5 dB,则认为试验场是不可用的,此外,增益基准天线在两个正交极化面上测得的场强差值应小于1 dB。
(4)测量用信号发生器、接收机等测量设备和仪表应具有良好的稳定性、可靠性、动态范围和测量精度,以保证测量数据的正确性。测量用仪表应有计量合格证,并在校验周期内。
测量开始前,应准备好与测量参数相对应的天线阵列幅相加权馈电网络,在对其幅相加权值确认的同时,要在非被测网络单元端接匹配负载的情况下,分别测量出总的馈电输入端口到各阵列单元输入端口传输系数的模|Si,j|(dB),并利用公式:
(其中N为阵列单元馈电端口数),求出与测量参数对应的天线阵列加权馈电网络的插入损耗Ln。
开始测量时,必须将被测天线和增益基准天线交替做水平和俯仰调整,以确保每一天线在水平和俯仰上的最佳指向,使其接收的功率电平为最大。
测量步骤如下。
(1)增益基准天线与源天线对准,通过转接,使增益基准天线与接收机相连接,此时接收机接收功率电平为P1(dBm)。
(2)被测天线通过带有相应馈电端口所需加权值的馈电网络转接,使被测天线与接收机相连,然后通过测量调整使它与源天线对准,此时,接收机接收功率电平为P2(dBm)。
(3)重复步骤(1)和(2),直至P1和P2测量的重复性达到可以接受的程度。
(4)被测天线某频率点的增益G按下式汁算:
G=G0+(P2-P1)+N式中:
G0——基准天线的增益(dBi),
N——计入了对应天线阵列加权馈电网络插入损耗Ln后的接收机输入端分别到被测天线和增益基准天线输出端通路衰耗的修正值(dB)。
(5)在同一个工作频带内,测量高、中、低三个频率点,并计算分贝平均值。
(6)根据电性能要求中的不同增益定义,设置阵列馈电网络各输出端口的幅相加权值,先测出馈电网络相应的插入损耗,然后重复步骤(4)和(5),分别进行相应增益测试。
性能判据为:
对于每个工作频段都进行高、中、低三个频点增益的测试,平均值应满足增益指标的要求,而且高、中、低三个频点增益的最差值不能小于增益指标1.0,否则,判定不合格。
方向图圆度(全向天线)、半功率波束宽度、前后比、交叉极化比和天线电下倾角的测量方法同理也可以参考增益的测试框图和测试步骤进行,在此就不详细介绍了。
4、小结
智能天线测试的复杂度比普通天线要复杂得多,只有做好了以上的测试,才能对智能天线的性能进行全面的考核,将智能天线的优势发挥出来。
上一篇:分布式天线系统
下一篇:智能天线借海事通信上位