- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
MIMO系统中的天线选择技术
随着无线通信的迅猛发展,人们对无线通信业务的类型和质量的要求越来越高。在当前频谱资源下提高通信速率和可靠性的办法之一就是使用多个发送和多个接收天线,也就是多输入多输出(MIMO)的通信系统。由于MIMO系统不可避免地要在发送端和接收端设置多副天线,导致其射频链路的硬件成本和通信双方为保持信道的非相关性所需空间的局限性(尤其是移动终端),以及天线数目的增加导致的空时码编解码的复杂性都在一定程度上限制了MIMO系统的应用,因此如何才能做到既要保持多天线系统较高的频谱效率和较高的可靠性,又要降低系统的复杂度和成本已逐渐成为人们的研究热点。目前,一种较有前景的技术就是在发送端或者接收端进行天线选择,用以克服MIMO系统的上述缺点。
天线选择方案
最优天线选择准则可分为2种:(1)以最大化多天线提供的分集增益提高传输质量,(2)以最大化多天线提供的容量来提高传输效率。一般来说,天线选择既可以在发送端进行,也可以在接收端进行,或者收发两端同时进行,他们对MIMO系统的性能影响不同,因此要视具体情况而定。
接收天线选择
接收天线选择与RAKE接收提供的类似,接收机可收到发送信号的几个版本,每个都经历了不同的复数衰落系数和噪声。假接收机有N个接收天线,要从N个天线选择n个接收,经过空间复用恢复原始数据输出。系统框图如图1所示。
图1 使用接收天线选择的MIMO系统
接收信号的分集合并方法主要有3种:
选择分集 选择来自SNR最高的路径信号进行检测,
最大比合并(MRC) 基于路径信号的最佳线性组合进行判决,
等增益合并(EGC) 简单地将各条路径的信号相加。
当n=1时,即接收端只有一个RF分支,但为了进行最佳选择需要知道所有支路的SNR。解决此问题 的方法之一是,基于信道增益的准静态性,在发送数据前缀使用训练序列,通过扫描天线,寻找信 道增益最高的天线,选择他来接收下一个数据。
当n≥2时,接收机的RF链路不止1条,可以选择接收天线的一个子集然后进行信号合并,称为广义选择。选择路径的合并可以通过MRC或EGC进行,其中MRC具有更好的性能,但是算法较麻烦,而EGC比较简单,但效率较低。
发送天线选择
对一发送天线选择系统,假定从m个RF链和M根发天线(M>m),接收端只有一根收天线。要从M根发天线中选择最合适的m根天线。天线的选择是在接收端进行的,通过信道估计获得信道准确信息,选择信道增益最佳的m个发送天线,再通过反馈链路通知发送端,如图2所示。
图2 使用发送天线选择的MIMO系统
与收天线选择不同,需要从接收端到发射端的反馈路径。反馈速率很小,尤其是使用单天线选择时,除了这个差别以外,发天线选择和收天线选择很类似,选择提供最高接收SNR的天线。要求发射机不仅知道m根最合适的天线,而且需要知道从每根发天线到接收机的复值信道增益。当发射机知道信道信息,可以得到一些额外的容量。当发射机完全知道所有的信道系数,信道容量将得到最大,即有信道状态信息(CSI)的无线信道容量比没有CSI的要高。
收发联合选择
收发联合选择是在发射端和接收端同时应用选择分集。如有M根发天线,N根接收天线,发送和接收端分别有m和n个RF链。总的信道矩阵H=M×N,选择天线的信道矩阵为H′=m×n。通常要使用空时码进行分集,如图3所示。
联合发送/接收选择机制必须选择的行和列形成子集,最大化发收信道增益的幅度平方和,不易实现。
天线选择实现算法
天线选择实现算法很多,但一般可归纳为两类:分集最大化的空时分组编码算法和信道容量最大化的空间多路复用算法。
图3 使用联合收发天线选择的MIMO系统
分集最大化的空时分组编码算法
对发射天线进行有效配置和使多元发射天线的分集达到最佳的一组方案称为空时编码,他结合了信道编码和多发射天线,通过空时码后的数据被串并转换成m个数据流,每一路数据流经过编码调制,通过m天线同时发送到信道。接收端通过最大似然检测方法,正确识别发送信号。可将空时译码算法和信道估计技术结合从而获得分集增益和编码增益。
上一篇:三坐标天线标测量系统
下一篇:RFID技术及RFID天线分析