- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
RFID标签天线制造技术
录入:edatop.com 点击:
目前,有三种天线制造技术:蚀刻/冲压天线(etched/punchedantenna)、印刷天线(printedantenna)和绕线式天线。其中,绕线和印刷技术在中国大陆得到了较为广泛的应用,台湾大部分的RFID标签制造商也是采用此技术;而蚀刻技术主要应用于欧洲地区,而在台湾,目前仅少数软性电路板厂有能力运用此技术制造RFID标签。绕线技术仅可用于制造125K与13.56M频宽的RFID标签,无法用于制造UHF频宽的RFID标签。印刷技术与蚀刻技术均可以运用于大量制造13.56M、UHF频宽,但是印刷的品质较蚀刻的差且耐用年限较短。一般印刷的RFID标签耐用年限为二至三年。但蚀刻的RFID标签耐用年限为十年以上。
按照美国护照案(e-passport)要求,其tag之耐用年限基本要求为十年以上,必须采用蚀刻技术制造。以下简单介绍绕线、印刷二种技术的特点和差异。
1、印刷天线结构与特征
RFID标签(又称非接触式IC卡)与接触式IC卡等其他卡产品的显著不同之处是包括了一个含有天线和晶片的INLAY层。不同INLAY制造方式形成各有特点的制造技术。不同的制造技术也影响RFID标签的结构设计。一张INLAY的两面都加上印刷层和保护膜即组成了一张RFID标签。
与绕线天线相比,印刷天线有以下优点:
(1)印刷式天线制造可较精确调整电性能参数,将卡片使用性能最佳化。RFID标签电性能参数的设计是十分重要的,它直接影响了RFID标签的读卡距离对读卡机的适应性和工作稳定性。RFID标签的主要技术电性能主要参数有:谐振频率、Q值和阻抗。为了达到最优性能所有的RFID标签制造技术都可以采用改变天线匝数、天线尺寸大小和线径粗细方法来获得。但印刷天线技术除此以外,还可以通过局部改变线的宽度,改变晶片层的厚度等精确调整到所需的目标值。RFID标签的谐振频率、Q值和阻抗可以采用阻抗仪或是网络分析仪测出。
(2)印刷式天线制造可任意改变线圈形状,以适应用户表面加工要求。由于RFID卡片的多用途使用,以及各种个性化的要求越来越多,将对RFID标签表面及卡体夹有种种限制,如打凸字,敏感图形等。印刷天线INLAY可按要求方便地改变成任何形状,甚至为非规则曲线以满足客户要求,而不降低任何使用性能。
(3)印刷式天线制造可使用各种不同卡基体材料,此种结构可按用户要求使用不同卡体材料,除PVC外,还可使用PET-G、PET、ABS、PC和纸基材料等。如果采用绕线技术,就很难用PC等材料生产出适应恶劣环境条件的RFID标签。
(4)印刷式天线制造适合于各种不同厂家提供的晶片模块。随着RFID标签的广泛使用,越来越多的IC晶片厂家都加入到生产RFID晶片模块的队伍。由于缺乏统一的标准,电性能参数也不同,而印刷天线INLAY结构的灵活性,可分别与各种不同晶片以及采用不同封装形式的模块相匹配,以达到最佳使用性能。
2、天线印刷技术
天线印刷是一道重要加工工序。
天线印刷技术与一般网版印刷技术相同。首先按设计好的天线形状进行制版。印刷网目可按实际需要在100-257目/吋之间选用。印刷油墨的选用十分关键。由于油墨是导电体。油墨主要成分是金属如银和铝等。要选用那些低电阻率、荷值比高的油墨。印刷后线圈的电阻一般在2-25Ω之间。
根据实际技术需要,采用单面或双面印刷天线,可以获得所需要的感抗。要想获得高质量的天线,还需要在许多细微之外进行改进,如油墨选用、油墨调和、压力大小、网目选用等,印刷板制作和油墨干燥等方面。这些都需要长期的工作实际经验累积。与绕线和蚀刻天线相比,印刷天线的技术的最显著特点是投资少、效率高。
3、晶片模块与天线之间的连接技术
连接是指晶片模块与天线之间的连接,它是所有不同天线制造技术中的一个关键环节。印刷天线与模块之间一般采用导电胶粘合或是直接压合的方法。印刷天线的搭接面积一般都大于模块连接端的面积,保证了连接的可靠性,再加上层压时高温高压,使得模块引线端与天线塔接块熔为一体。此种连接方式的优点是技术可操作性高和性能可靠性高。
绕线式天线通常采用焊接的方式连接模块。此种技术在保证焊接牢靠、天线硬实和模块位置十分准确以及焊接电流控制较好的情况下,能保证较好的连接。但因受控的因素较多,容易出现虚焊、假焊和偏焊等缺陷。此种连接方法的另一个优点是可使用体积细小的模块,如Mifare1、FCP2模块等方便地进行连接,而不降低产能和增加成本。采用此类小型封装模块,可以制作厚度≦0.5mm的RFID标签,而且表面无痕迹。RFID标签制造业现在已经有将晶片(Die)与印刷天线贴合的技术,并广泛用于智能标签的生产。
按照美国护照案(e-passport)要求,其tag之耐用年限基本要求为十年以上,必须采用蚀刻技术制造。以下简单介绍绕线、印刷二种技术的特点和差异。
1、印刷天线结构与特征
RFID标签(又称非接触式IC卡)与接触式IC卡等其他卡产品的显著不同之处是包括了一个含有天线和晶片的INLAY层。不同INLAY制造方式形成各有特点的制造技术。不同的制造技术也影响RFID标签的结构设计。一张INLAY的两面都加上印刷层和保护膜即组成了一张RFID标签。
与绕线天线相比,印刷天线有以下优点:
(1)印刷式天线制造可较精确调整电性能参数,将卡片使用性能最佳化。RFID标签电性能参数的设计是十分重要的,它直接影响了RFID标签的读卡距离对读卡机的适应性和工作稳定性。RFID标签的主要技术电性能主要参数有:谐振频率、Q值和阻抗。为了达到最优性能所有的RFID标签制造技术都可以采用改变天线匝数、天线尺寸大小和线径粗细方法来获得。但印刷天线技术除此以外,还可以通过局部改变线的宽度,改变晶片层的厚度等精确调整到所需的目标值。RFID标签的谐振频率、Q值和阻抗可以采用阻抗仪或是网络分析仪测出。
(2)印刷式天线制造可任意改变线圈形状,以适应用户表面加工要求。由于RFID卡片的多用途使用,以及各种个性化的要求越来越多,将对RFID标签表面及卡体夹有种种限制,如打凸字,敏感图形等。印刷天线INLAY可按要求方便地改变成任何形状,甚至为非规则曲线以满足客户要求,而不降低任何使用性能。
(3)印刷式天线制造可使用各种不同卡基体材料,此种结构可按用户要求使用不同卡体材料,除PVC外,还可使用PET-G、PET、ABS、PC和纸基材料等。如果采用绕线技术,就很难用PC等材料生产出适应恶劣环境条件的RFID标签。
(4)印刷式天线制造适合于各种不同厂家提供的晶片模块。随着RFID标签的广泛使用,越来越多的IC晶片厂家都加入到生产RFID晶片模块的队伍。由于缺乏统一的标准,电性能参数也不同,而印刷天线INLAY结构的灵活性,可分别与各种不同晶片以及采用不同封装形式的模块相匹配,以达到最佳使用性能。
2、天线印刷技术
天线印刷是一道重要加工工序。
天线印刷技术与一般网版印刷技术相同。首先按设计好的天线形状进行制版。印刷网目可按实际需要在100-257目/吋之间选用。印刷油墨的选用十分关键。由于油墨是导电体。油墨主要成分是金属如银和铝等。要选用那些低电阻率、荷值比高的油墨。印刷后线圈的电阻一般在2-25Ω之间。
根据实际技术需要,采用单面或双面印刷天线,可以获得所需要的感抗。要想获得高质量的天线,还需要在许多细微之外进行改进,如油墨选用、油墨调和、压力大小、网目选用等,印刷板制作和油墨干燥等方面。这些都需要长期的工作实际经验累积。与绕线和蚀刻天线相比,印刷天线的技术的最显著特点是投资少、效率高。
3、晶片模块与天线之间的连接技术
连接是指晶片模块与天线之间的连接,它是所有不同天线制造技术中的一个关键环节。印刷天线与模块之间一般采用导电胶粘合或是直接压合的方法。印刷天线的搭接面积一般都大于模块连接端的面积,保证了连接的可靠性,再加上层压时高温高压,使得模块引线端与天线塔接块熔为一体。此种连接方式的优点是技术可操作性高和性能可靠性高。
绕线式天线通常采用焊接的方式连接模块。此种技术在保证焊接牢靠、天线硬实和模块位置十分准确以及焊接电流控制较好的情况下,能保证较好的连接。但因受控的因素较多,容易出现虚焊、假焊和偏焊等缺陷。此种连接方法的另一个优点是可使用体积细小的模块,如Mifare1、FCP2模块等方便地进行连接,而不降低产能和增加成本。采用此类小型封装模块,可以制作厚度≦0.5mm的RFID标签,而且表面无痕迹。RFID标签制造业现在已经有将晶片(Die)与印刷天线贴合的技术,并广泛用于智能标签的生产。
申明:网友回复良莠不齐,仅供参考。如需专业帮助,请学习业界专家讲授的天线设计视频培训教程。
上一篇:为什么水平极化传播的信号在贴近地面时会在大地表面产生极化电流?而垂直极化就不会?
下一篇:如何使用史密斯圆图调匹配