- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
IML工艺天线设计方法
从图4中的两幅图中可以看出:①的RL曲线的变化比较大,属于敏感区,因此在设计时应将①的面积尽量减少,以减少在高压成型时天线形状的变形量。综合天线的设计经验,将①的位置调试到③位置(平面区域)后,再模拟仿真后,天线的性能基本没有变化,但是减少了天线敏感区在易拉伸变形区的面积。经过大量的调试和仿真评估,最后得到的天线为如图5,这样天线敏感区在曲面上的部分转移到平面上,很大程度上减少了在印刷冲压后造成的天线变形,克服了在天线在IML工艺中最大的难题,为以后的批量生产奠定了良好的基础。
图5 调试后的最终天线
4 测试和仿真结果
4.1 仿真和测试结果的比较
(1)RL比较
在天线优化设计后,利用DELL490台式电脑(带有一个xFDTD加速卡)进行宽带仿真,耗时58分钟,得到天线的RL。将上述设计的天线经IML工艺生产后测试和仿真的RL对比如图6,从图中可以看到:实测结果和仿真结果基本是一致的,也证明了这种天线设计方案的可行性。
图6 虚线是测试数据,实线是仿真数据
(2)效率的比较
将该模型的的输入馈源,采用点频仿真,并改变相应的频率,经过约32分钟的计算便可得到天线的效率,如表1所示。
表1 效率仿真和测试结果对比
频率(MHz) |
仿真结果 |
实测结果 |
1850 |
52.6% |
54.9% |
1920 |
55.1% |
59.2% |
1990 |
48.7% |
51.3% |
824 |
43.2% |
45.7% |
859 |
48.6% |
49.8% |
894 |
44.1% |
46.4% |
(3)SAR比较
SAR(Specific Absorption Rate),手机行业中主要关注的是天线对人类头部的影响,SAR值的大小和手机的辐射功率密切相关。在天线设计中,要尽量减少SAR值,使之通过相应的规范。在软件仿真中,将SAM(头部)模型导入原来模型中,并调节手机和SAM到合适位置,采用点频馈源仿真。注意:在仿真不同频率SAR时,要改变不同频率下组织液的相对介电常数和导电率,一次计算大约47分钟后得到如表2的仿真结果。
表2 SAR仿真和测试结果对比
信道 |
仿真结果 |
实际测试结果 |
Ch512 |
0.956mw/g |
1.08mw/g |
Ch661 |
1.062mw/g |
1.16mw/g |
Ch810 |
0.904mw/g |
1.03mw/g |
Ch128 |
1.051mw/g |
1.04mw/g |
Ch190 |
1.127mw/g |
1.21mw/g |
Ch251 |
1.024mw/g |
1.18mw/g |
从实验室的测试数据看,仿真和测试有很好的一致性。
(4)HAC比较
HAC(Hearing Aid Compatibility)。在进入美国的手机中,有一部分手机需要测试HAC并要通过相应的标准。表3 HAC仿真和测试结果对比
|
Measure |
Simulation |
||
E-Field (V/m) |
H-Field (A/m) |
E-Field (V/m) |
H-Field (A/m) |
|
Ch512 |
162/M2 |
0.351/M2 |
154.360/M2 |
0.3434/M2 |
Ch661 |
168.2/M2 |
0.401/M2 |
159.691/M2 |
0.3962/M2 |
Ch810 |
165.3/M2 |
0.337/M3 |
156.159/M2 |
0.3385/M3 |
Ch128 |
329.7/M1 |
0.31 /M3 |
316.62/M1 |
0.3265/M3 |
Ch190 |
340.2/M1 |
0.329/M3 |
343.624/M1 |
0.3315/M3 |
Ch251 |
338.8/M1 |
0.345/M2 |
340.414/M1 |
0.3518/M2 |
上一篇:等离子鞭天线仿真设计分析
下一篇:小型共面波导馈电的超宽带天线设计