标准和非标准无线技术的对比
来源: 评论:0 点击:
蓝牙协议允许在(PAN或“微蜂窝”中的)1个主设备和最多7个从设备之间传送数据,最高速率可达723kbps。然而,实际数据有效载荷一般会由于通信协议开销而所有减少。这些通信协议开销主要是利用地址和其它头部信息来定义每个单元的类型,用以确保与其它蓝牙设备的兼容性。
蓝牙标准采用高斯频移键控(GFSK)调制方案,在2.4GHz频段内使用83个1Mbps的信道。GFSK先对调制过的基带信号进行高斯滤波,然后再送到载波发射电路,从而阻尼或降低高电平(1)和低电平(0)之间的频率摆幅。它与直接频率键控(FSK)方法相比,可以使发送信号的频谱更加窄、更加“干净”。
蓝牙工作在与其它无线技术(如Wi-Fi)相同的免许可ISM频段,其它无线技术的干扰会使数据速率降低,因为经常会有错误的数据包需要重发。不过,版本1.2通过采用自适应跳频(AFH)技术解决了这个问题。这种技术允许两个通信中的蓝牙设备不断交换频段中的共有频率,从而避免与其它相邻无线设备发生冲突。
蓝牙设备共有3种基本的功率等级:Class1(可视距离为100米)、Class2(可视距离为10米)、Class3(可视距离为23米)。目前大多数消费类设备属于蓝牙Class2类型的设备。
蓝牙微蜂窝中的每个设备都有唯一的48位识别符。第一个被识别的设备(通常在2秒以内)将成为主设备,它会在整个频段上设置为每秒使用1,600个频率。微蜂窝中的所有其它设备“锁定”或同步于这个序列。主设备在偶时隙发送信号,从设备在奇时隙作出响应。微蜂窝中被激活的从设备都会被分配一个地址,并侦听带有它们自己地址的时隙。
从设备也会进入低功率的“嗅探(Sniff)”、“保持(hold)”或“停止运行(park)”模式。在嗅探模式下,设备只是周期性地在特定的嗅探时隙进行侦听,但仍保持同步状态。在保持模式下,设备也只是侦听以确定是否要激活。在停止运行状态,设备甚至会释放它的地址。虽然保持和停止运行模式能延长电池寿命,但设备至少会在1600个跳频时间内失去同步,直到新的链路建立起来。建立链路需要几秒的时间,因此当用户要求恒定快速响应时这是一个很明显的缺陷。
蓝牙标准包括许多“模式”,你在开发时可以有目的地进行选择。然而,所有蓝牙设备都必须进行标准兼容性认证,且所有的标准使用者都必须是蓝牙专门兴趣小组的成员。迫于蓝牙专门兴趣小组成员的商用压力,蓝牙的大多数模式都适合手机的多媒体和文件传输应用。因此,采用蓝牙规范来开发产品并不是一件轻松的事,可能使蓝牙不太适合用在简单的设备中。
ZigBee是最近推出的RF标准,主要用于具有大量分布式节点的低功率、低数据率无线监视和控制应用。ZigBee标准由IEEE802.15.4定义,是一种具有高可靠性的简单数据协议。它对每次发送的数据串进行确认,并采用它技术来保证通信的完整性。ZigBee不需要蓝牙的同步机制,因而功耗要求显著降低。
与蓝牙一样,ZigBee工作在ISM2.4GHz波段(16个间隔为5MHz的信道)。该标准也提供工作在欧洲868MHz(单信道)和美国915MHz(10个间隔为2MHz的信道)波段的版本,最大数据速率可达250kbps。ZigBee采用直接序列扩频(DSSS)机制进行数据传输。DSSS具有一定的抗干扰性能,但需要传送额外的数据包,从而带来带宽使用率和功耗方面的额外开销。ZigBee可以在某些应用环境中解决蓝牙标准可能存在的缺陷,特别是在低延时和低数据速率应用场合中。然而,ZigBee设备在无线物理层仍必须承载一定的开销以满足802.15.4规范所要求的互操作性功能。
互补性技术
蓝牙和ZigBee组织认为,这两个标准是互补而非竞争的关系。ZigBee确实允许更多的节点(多达4,090个),而蓝牙总共才7个从设备加上1个主设备。ZigBee协议适合工业和家庭监视与控制应用,这些网络的特点是节点多、节点活跃性特别低以及网络功能容易扩展。
功耗是这两个标准之间的最大差异。ZigBee主要用于工作时间特别短、寿命特别长的应用,其电池寿命以年来度量,而连续的蓝牙通信一般在几小时之内就会耗尽电池。此外,ZigBee芯片组的成本比蓝牙解决方案的成本低(虽然为了降低成本,不少的蓝牙协议堆栈提供少于全范围的工作模式)。
Nordic半导体公司开发了一种私有的无线解决方案,称为nRF24xx。这是一种系统级芯片器件,由无线收发器、8051微控制器、4通道12位ADC和各种标准接口组成,采用0.18微米CMOS工艺制造。nRF24xx使用GFSK调制机制(与蓝牙非常相似),提供1Mbps的标称数据速率。为尽可能提高无线性能、减小功率预算,它的开销很少。nRF24xx产品引入了基于硬件的物理层协议处理,在正常工作时它是透明的。图1(a)和(b)对ZigBee协议堆栈和这个私有的解决方案进行了比较。
蓝牙标准采用高斯频移键控(GFSK)调制方案,在2.4GHz频段内使用83个1Mbps的信道。GFSK先对调制过的基带信号进行高斯滤波,然后再送到载波发射电路,从而阻尼或降低高电平(1)和低电平(0)之间的频率摆幅。它与直接频率键控(FSK)方法相比,可以使发送信号的频谱更加窄、更加“干净”。
蓝牙工作在与其它无线技术(如Wi-Fi)相同的免许可ISM频段,其它无线技术的干扰会使数据速率降低,因为经常会有错误的数据包需要重发。不过,版本1.2通过采用自适应跳频(AFH)技术解决了这个问题。这种技术允许两个通信中的蓝牙设备不断交换频段中的共有频率,从而避免与其它相邻无线设备发生冲突。
蓝牙设备共有3种基本的功率等级:Class1(可视距离为100米)、Class2(可视距离为10米)、Class3(可视距离为23米)。目前大多数消费类设备属于蓝牙Class2类型的设备。
蓝牙微蜂窝中的每个设备都有唯一的48位识别符。第一个被识别的设备(通常在2秒以内)将成为主设备,它会在整个频段上设置为每秒使用1,600个频率。微蜂窝中的所有其它设备“锁定”或同步于这个序列。主设备在偶时隙发送信号,从设备在奇时隙作出响应。微蜂窝中被激活的从设备都会被分配一个地址,并侦听带有它们自己地址的时隙。
从设备也会进入低功率的“嗅探(Sniff)”、“保持(hold)”或“停止运行(park)”模式。在嗅探模式下,设备只是周期性地在特定的嗅探时隙进行侦听,但仍保持同步状态。在保持模式下,设备也只是侦听以确定是否要激活。在停止运行状态,设备甚至会释放它的地址。虽然保持和停止运行模式能延长电池寿命,但设备至少会在1600个跳频时间内失去同步,直到新的链路建立起来。建立链路需要几秒的时间,因此当用户要求恒定快速响应时这是一个很明显的缺陷。
蓝牙标准包括许多“模式”,你在开发时可以有目的地进行选择。然而,所有蓝牙设备都必须进行标准兼容性认证,且所有的标准使用者都必须是蓝牙专门兴趣小组的成员。迫于蓝牙专门兴趣小组成员的商用压力,蓝牙的大多数模式都适合手机的多媒体和文件传输应用。因此,采用蓝牙规范来开发产品并不是一件轻松的事,可能使蓝牙不太适合用在简单的设备中。
ZigBee是最近推出的RF标准,主要用于具有大量分布式节点的低功率、低数据率无线监视和控制应用。ZigBee标准由IEEE802.15.4定义,是一种具有高可靠性的简单数据协议。它对每次发送的数据串进行确认,并采用它技术来保证通信的完整性。ZigBee不需要蓝牙的同步机制,因而功耗要求显著降低。
与蓝牙一样,ZigBee工作在ISM2.4GHz波段(16个间隔为5MHz的信道)。该标准也提供工作在欧洲868MHz(单信道)和美国915MHz(10个间隔为2MHz的信道)波段的版本,最大数据速率可达250kbps。ZigBee采用直接序列扩频(DSSS)机制进行数据传输。DSSS具有一定的抗干扰性能,但需要传送额外的数据包,从而带来带宽使用率和功耗方面的额外开销。ZigBee可以在某些应用环境中解决蓝牙标准可能存在的缺陷,特别是在低延时和低数据速率应用场合中。然而,ZigBee设备在无线物理层仍必须承载一定的开销以满足802.15.4规范所要求的互操作性功能。
互补性技术
蓝牙和ZigBee组织认为,这两个标准是互补而非竞争的关系。ZigBee确实允许更多的节点(多达4,090个),而蓝牙总共才7个从设备加上1个主设备。ZigBee协议适合工业和家庭监视与控制应用,这些网络的特点是节点多、节点活跃性特别低以及网络功能容易扩展。
功耗是这两个标准之间的最大差异。ZigBee主要用于工作时间特别短、寿命特别长的应用,其电池寿命以年来度量,而连续的蓝牙通信一般在几小时之内就会耗尽电池。此外,ZigBee芯片组的成本比蓝牙解决方案的成本低(虽然为了降低成本,不少的蓝牙协议堆栈提供少于全范围的工作模式)。
Nordic半导体公司开发了一种私有的无线解决方案,称为nRF24xx。这是一种系统级芯片器件,由无线收发器、8051微控制器、4通道12位ADC和各种标准接口组成,采用0.18微米CMOS工艺制造。nRF24xx使用GFSK调制机制(与蓝牙非常相似),提供1Mbps的标称数据速率。为尽可能提高无线性能、减小功率预算,它的开销很少。nRF24xx产品引入了基于硬件的物理层协议处理,在正常工作时它是透明的。图1(a)和(b)对ZigBee协议堆栈和这个私有的解决方案进行了比较。
蓝牙工作在与其它无线技术(如Wi-Fi)相同的免许可ISM频段,其它无线技术的干扰会使数据速率降低,因为经常会有错误的数据包需要重发。不过,版本1.2通过采用自适应跳频(AFH)技术解决了这个问题。这种技术允许两个通信中的蓝牙设备不断交换频段中的共有频率,从而避免与其它相邻无线设备发生冲突。
评论排行
- ·HFSS天线设计入门中文视频教程(1)
- ·CST2013破解文件,和谐万岁(1)
- ·关于打不开ADS帮助文档(1)
- ·基于左手介质的小型微带天线(1)
- ·HFSS10中仿真出现的错误(1)
- ·HFSS仿真螺旋天线模型的脚本程序(1)
- ·HFSS能仿真线圈天线吗?(1)
- ·Momentum中无法设置Substrate?(1)
- ·大家ADS2008中PIN二极管如何设定啊(1)
- ·请教ADS中的MSub个参数的意思(1)
- ·HFSS中怎么设置一个平面波激励啊(1)
- ·Hfss局部加密网格(1)
- ·HFSS使用心得(1)
- ·HFSS设计微带发夹型滤波器,求耦合系数请教(1)
- ·Microstrip Antenna Technology (Ke...(0)
- ·跟大家分享个宽频带90度功分移相网络(0)
- ·求教ADS中倍频器与频率源设置(0)
- ·30多个ADS视频教程在线观看(0)
- ·微波射频电路仿真100例(0)
- ·射频功率放大器设计资料(0)