- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
标签交换技术在全光互联网中的应用
3、基于标签交换的全光互联网解决方案
将传统的MPLS技术和波长路由交换,光分组交换,光突发交换相结合形成了基于标签交换的全光互联网技术,相应的全光互联网解决方案有:多协议波长标签交换MPLmS、基于标签光突发交换LOBS、全光标签分组交换OLPS。
3.1 多协议波长标签交换(MPLmS)光互联网技术
MPLmS是传统电MPLS在光域上的扩展,使用OXC作为LSR,波长作为标签(如图1所示),沿用了原有的MPLS框架,不需要定义新的内容。它直接采用第一层(光波长级)的交换来处理第三层的IP路由转发,将标签与WDM波长信道关联起来,其分立波长或光纤信道类似于标签,并通过MPLmS信令来指配光信道。从而大大简化了网络的层次结构,并具有更强大的业务管理、流量工程、QoS保证的功能。MPLmS 也可以看作是一种没有标签栈或按包转发的简化MPLS,利用IP选路协议来发现拓扑,利用MPLS信令协议来实现波长通路的自动指配,为实时配置光波长通路提供了基本框架,选路与信令分离有利于灵活引入新特性新算法。这种方法可以使业务层上的路由器、ATM交换机或ADM动态地要求传送网提供所需的波长,实现统一的网络控制和快速业务供给,简化了IP层与光层的融合以及跨层的网络管理,降低了网络运行和业务拓展成本,有利于大规模网络敷设。IP层与光层的融合正展现了前所未有的前景。MPLmS是构建新型网络的管理控制平台,通过它可将IP等各种业务无缝的接入到具有巨大带宽的光纤网络上来,是构建未来新型网络的有效方法。
标签交换技术在全光互联网中的应用
图1 MPLmS网络体系结构及标签交换过程
MPLmS把MPLS标签交换的基本概念应用到了光域,采用光波长作为交换的标签,将第三层路由转发与第一层(光层)的光交换进行了无缝融合,利用波长来寻找路由,并标识所建立的光通路,为上层业务提供快速的波长交换通道。光网络节点被看作是MPLS设备,MPLmS光网络的边缘采用标签栈,它将更小的电MPLS设备节点的LSP整合进更大的波长LSP中。MPLmS域的中间节点在数据传输过程中不再运行任何电的标签处理,并且只有有限个标签处理操作在光域上实现。利用这些功能,波长标签方案将MPLS的控制平面粘贴到光波长路由交换机/光交叉连接设备的上层,并将它看作是具有MPLS能力的节点,即光波长交换路由器(O-LSR)节点。
实际上最初MPLS的标签交换的目的是运行第二层的快速转发来处理第三层的数据流,人们延伸了这种想法,波长标签在本质上是运行第一层(如光层)转发来处理第三层的数据流。尤其是在MPLmS标签和WDM波长通道之间,允许使用MPLmS信令来建立光路径通道。例如,一个在对等MPLS O-LSR之间的端到端的光路径等价于一个粗粒度的LSP,称为波长LSP等。下面我们看看MPLmS的网络模型:
MPLmS应用的网络模型图2所示。支持标签交换的IP路由器(LSR)连接光核心网络,光网络由若干OXC通过光链路相互连接而成。OXC由光层面的交叉连接设备和控制平面组成,具有数据流交换功能,交换由可配置的交叉连接表控制。目前,OXC节点交换需要进行光电转换,在电域进行。随着光开关和可调谐激光器等技术的进步,将来它可以实现全光交换。控制平面使用基于IP的协议和信令进行节点的可达性检测、控制建立和维护端到端的光通路。