- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
红外遥控器控制扩展器/中继器构建
其项目介绍如何构建一个红外遥控器控制扩展器/中继器从远程位置来控制您的电子电器。
红外探测器模块接收到红外信号遥控器和两个IR LED是发光信号的设备。您可以将红外发光LED的设备,你想用一些电线控制,并保持到远程控制位置的主要单位密切。在左边的发光二极管的形象是焊接在板上。该电路由三个主要部分组成,红外接收器模块,555定时器配置为一个振荡器和输出/发射阶段。下面我们将描述电路的工作。
红外信号
从远程控制发出的红外信号所需要的信息来控制家电。此信号由脉冲代码0和1位,指示设备做了一定的操作 。用于编码的红外信号的最常用的协议之一是 飞利浦- RC5的协议。信号由两部分组成,控制脉冲,并在下面的图片中看到的载波 。
为载体使用一个共同的频率是38KHz的控制脉冲的频率在1 - 3kHz的范围 。载波信号由控制脉冲调制产生的信号是在红外波段遥控器发出的电磁频谱。红外波段是人眼看不见的。你可以看到如果一个红外LED发光或不使用相机。点到LED的相机,你会看到灯亮起关闭 。 [p] 电路描述
红外信号接收TSOP1738。TSOP1738是一个在38KHz的红外线接收器。在红外线接收器的输出中,我们得到了一个解调信号,这意味着我们得到的低频控制脉冲。红外线接收器是由C1,R1和Z1,形成了一个5V电源供电。没有接收信号,红外探测器输出高,Q1导通,使IC的4个针脚低,555定时器在复位状态。第一季度也作为TSOP1738至9V IC1的信号转换成5V信号电平转换器。
当高控制脉冲TSOP1738输出上出现,然后启动定时器555(这是作为一个振荡器配置)在一个预设的频率振荡,为每一个数据脉冲的持续时间。这意味着,在第3脚,我们得到了一个信号,调制信号源的类似。它有一个载体组件和一个控制脉冲组件。555定时器的振荡频率由R4和C2和脉冲周期由下式给出:T = 1,4 R4的C2
微调R5是用来微调振荡频率在38KHz的。这等于载波频率。 输出阶段是从R6的形成,第二季度,两个,一个红色LED红外灯和两个限流电阻R7和R8。Q2是作为电压跟随器连接,这意味着当Q2基高晶体管是允许通过LED的电流流过。LED电流是由R7和R8按下列公式计算:
因此,红外灯都散发出由TSOP1738接收到的信号是类似的信号,这意味着它重复接收到的信号在较高的红外辐射强度。红色LED 用于输出信号的 光学指标。可以从一个9V电池供电电路。
零件清单
R1
3K3 = 1K R2 =
R3 = 10K
R4 = 15K
R5 = 4K7微调
R6 = 2K2
R7 = 470R
R8 = 47R - 1/2W
C1 =47μF的- 16V
C2 = 1N -
C3 = 100uF的- 16V
C4 = 47UF - 16V
Z1 = 5V1齐纳
Q1 = BC549C
第二季度= BC337
IC1 = NE555
的LED1 =红色指示灯
LED2,3 = IR LED
红外接收器= TSOP138或IR38DM
印刷电路板 [p] PCB是使用Cadence的设计。
格式或PDF格式的下载PCB 文件
测试
在供电电路,消除红外灯。没有输入红色LED应关闭。现在,按下遥控器上的按钮,红色LED闪烁。如果是这样的话,那么你的电路应工作正常。安装红外灯。我们发现在测试,红外信号从电路发出的遥控器和红外信号发射是干扰对方和的使接收设备不以反应接收到信号,这发生时,IR遥控器和红外电路的发光二极管在同一个房间里是期间。要解决,我们必须隔离遥控器的红外线光束。为此,我们使用红外线感应器前,在照片下面看到一个细管,使光束发出传感器直接从远程命中。另一种解决这个会发光的LED放在不同的房间。
安装
我们安装在墙上的电路,下面的照片上看到的方式。你可以看到,远程控制LED光从环绕孤立。您还可以注意到一个LED远程我们想控制的设备附近放置。
射频工程师养成培训教程套装,助您快速成为一名优秀射频工程师...