- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
时域反射仪的硬件设计与实现----关键电路设计( 五)
4.1时域反射测试
经过较长时间的硬件调试,以及软硬件电路的相互配合,时域反射仪基本实现了电缆测试的功能,下面将分不同情况对时域反射测量进行验证。
4.1.1无电缆下的测试
在进行电缆故障测量前一般需要对反射仪做粗略的设置,即选定一个脉冲信号,使其在屏幕上方可以看到分别从两个通道上输入的发射脉冲信号,以确保时域反射仪处于正常工作状态。图5-1给出了在没有接被测电缆情况下,在屏幕上显示的波形。
从图中可以看到,两个通道波形基本相同,都看不到有反射信号的产生,从两个角度可以分析该现象。
传输线理论分析:因为脉冲信号经过放大以后为8V,通过功率分配器分别送到两个输入端口,则经过均分以后,每个脉冲的幅度变成了4V左右。当没有被测电缆的情况相当于被测电缆长度为0m,测量通道形成了负载开路的状态,在脉冲输入口处即发生了脉冲信号的反射,由于时间间隔很短,反射脉冲和发射脉冲完全重叠,幅度增加一倍;而参考通道由于内部接了一个50Ω的电阻,相当于负载完全匹配,则不会有反射脉冲信号,显示出的幅度不变,则恰好对应了屏幕上测量通道的脉冲信号幅度为参考通道脉冲信号幅度的两倍。
电子线路理论分析:脉冲信号经过放大以后为8V,不考虑传输线上的阻抗特性,从图4-14中可以看到,脉冲信号在进入通道之前,经过了一个二分之一电阻分压网络,则实际上参考通道上的脉冲信号幅度只有原脉冲信号幅度的一般,即4V左右;脉冲进入测量通道前由于没有分压网络,且没有连接电缆,由测量通道为高阻输入,从信号测量角度来讲,相当于输入测量通道的信号就是原脉冲信号,即为SV左右的发射脉冲信号。这样也能合理的解释为什么在屏幕上看到的测量通道的脉冲信号幅度是参考通道脉冲信号幅度的两倍左右。
4.1.2电缆校准测试
在进行正常电缆测试前,一般先要对电缆做一次校准,即对一根已知长度(20m)且与被测电缆材料(50Ω高频同轴电缆)相同的电缆做一次测试,通过对该电缆的测试,可以计算出一个波速因子NVP,即脉冲信号在电缆中的传输速度与电信号在真空中的传输速度的比值。图5-2所示为利用标准电缆来校准波速因子的显示图形,采用的是50ns的脉冲信号。
当接上标准校准用电缆(50Ω同轴电缆)以后,通过选择合适的脉冲信号,此时只用测量通道即可完成波速因子的校准。通过调整两个垂直光标的位置,当两个光标与两个脉冲沿基本对齐以后,屏幕上显示了校准所得的波峰因子NVP为0.65,为了保证测量结果的准确性,最好是进行多次校准,因为NVP的大小变化是以0.01为步进,如果NVP的偏差0.01,则测量结果就会偏差±1%.经过多次校准[p] 发现,NVP的变化范围已知保持在0.65至0.66之间变化,由此可得NVP引入的误差为测试总长度的±1%.每产生一个新的NVP值后,该参数被存入ARM内部单元,以备在正式测试时作为已知参数使用。表5-1给出了经过10次校准,测得的NVP值的统计情况。
采用表5-1中计算的NVP值,并利用图5-2所测得的时间变量t,带入式(2-6)后计算出校准电缆的长度L为19.982m,与实际使用的长度基本一致。
4.1.3实际电缆测试
在实际电缆测试实验中,选用了一根长度为200m的50Ω的同轴电缆,采用500ns的窄脉冲信号进行测试。如图5-3和图5-4,分别为负载开路和短路下的实测波形,实际测到的结果均为198.9m,与电缆实际长度相差1.lm,相对误差为总长度的0.55%.又因为当时基在500ns/div情况下,分辨率随时基变化而变化,此时的分辨率约为2m.
如果采用表5-1中计算出的NVP均值(0.653)进行200m电缆测量,采用图5一3提供的时间间隔t(2.04us),则计算出的电缆长度约为199.8m,计算结果误差只有0.2m,误差为总长度的0.1%,比实际测量结果更好,由此可知如果经过多次校准求出NVP均值,测量的准确度将越高。从图中可以看到时间增量为2.04us,如果采用200ns/div的时基,也可以对200m的电缆进行测试,对应了屏幕上的10大格,而此时的分辨率约为0.8m(0.65*3e8m/s*8ns/2=0.78m)。
从图中可以看到,发生脉冲和反射脉冲的形状都发生了一定的变化,这是由于电缆长度相对于信号波长而言,电缆长度远远大于信号的波长,此时电缆被看作是一个分散模型。电缆本身的电阻和电感,电缆并行线之间电容和电导都对脉冲信号造成了影响,导致了脉冲波形发生变化,同时电缆的损耗也会对波形造成一定的影响。通过一定的补偿电路可以将波形调整到比较正常的情况,同时也不会对测量造成影响。
本设计要求测量长度能都达到1000m,由于没有可用的测试电缆,因此没有给出直接测量结果,但是从图5-3中可用看到,在测量200m电缆时,反射脉冲的幅度接近3V,并没有很大的衰减,因此可用推断在测量100伽口的电缆时,仍然可用显示出反射脉冲。如果反射脉冲的幅度较小,可利用通道的可变增益运放,将反射脉冲信号进行放大,这样也能达到测量要求。
4.1.4减小盲区测试
在测量较短的电缆时误差影响更大,该误差主要表现在对脉冲信号的识别上,这是因为在短距离情况下,反射脉冲有可能与发射脉冲相叠加,导致对反射脉冲的前沿判断不准确,光标定位不准,不能进行有效的测量,产生测量盲区。在这种情况下,将两个通道上的脉冲信号做简单的波形减法运算后,可以得到只剩下反射脉冲信号的M信号。这样再进行测量的时候,光标2的位置就可以选在计算出的M信号脉冲的前沿,这样就相当于进行光标测量的时候,光标选定的位 [p] [p] NG-LEFT: 0px; PADDING-RIGHT: 0px; FONT: 14px/22px 宋体, Georgia, verdana, serif; WHITE-SPACE: normal; ORPHANS: 2; LETTER-SPACING: normal; COLOR:; WORD-SPACING: 0px; PADDING-TOP: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px">1.由于处理器采用的是ARM7系列,其工作速度最高只有48MHz,因此波形刷新速度比较慢,屏幕上显示的波形有明显的残留效应,显示出的波形就不够光滑,建议采用更高档系列的ARM或DSP作为处理器,使工作速度达到百MHz以上,可以改善上述问题。
2.在测里较长电缆情况下,由于此时没有延时,测量效果基本达标,而在测量短距离电缆时,采用较小的时基,由于显示脉冲波形不够稳定,导致测量效果不佳。脉冲顺序等效延时在理论上没有问题,但在实际测量中,没有达到设计要求,重要因为脉冲信号在FPGA内部的延时受信号在FPGA内部传输延时不确定因素的影响,导致脉冲信号的延时没有按照设定的延时参数来产生,这样严重影响了测量波形的拼合。在后期设计中考虑数字电路的优化,并在软件处理上对多次采集到的数据进行比较。同时也可以考虑在电路中添加随即等效采样电路,利用随即等效采样的方式来提高采样精度。
3.测t的电缆长度有限,因为产生的脉冲信号最大只有8V,对于较长的电缆该幅值还不够高。对电缆故障类型的测量还较简单,只能测量开路、短路和高阻等故障,对于跨接、串扰等故障还不能识别,在后期的设计可以中考虑对这几个方面的测试要求。
4.最小分辨率的定义只在时基为100ns/div情况下有效,当时基档位不同时,分辨率也发生了变化,而相对误差在短距离测量下比较大,如果能够有效的实现J顶序等效采样,可以在一定程度上减小短距离测量下的相对误差。
射频工程师养成培训教程套装,助您快速成为一名优秀射频工程师...
天线设计工程师培训课程套装,资深专家授课,让天线设计不再难...
上一篇:远程电源管理系统设计
下一篇:TVS在数字移动电话电路中的设计与应用