• 易迪拓培训,专注于微波、射频、天线设计工程师的培养
首页 > 电子设计 > 电源技术 > 电源技术 > 陶显芳开关电源原理与设计系列连载十九

陶显芳开关电源原理与设计系列连载十九

录入:edatop.com    点击:
(上接1-7-2.开关电源电路的过渡过程)

图1-24是把储能滤波电容器进行充电的时间全部拼凑在一起时,储能滤波电容器按正弦曲线进行充电的电压波形。我们可以把图1-24看成储能滤波电 容器刚好用了6个工作周期就把电压充到最大值,其中,T1、T2、…T6分别代表Toff1、Toff2、…Toff6。Toff1代表工作开关第一次关 断时间,其它依次类推。储能滤波电容器充满电后,由于整流二极管的作用,它不可能向变压器的次级线圈放电,因此,T6以后的正弦曲线不可能再继续发生。

这里必须指出,图1-24所示的电压波形在现实中是不存在的,因为,图1-24中的电压波形在时间轴上是不连续的,这里只是为了便于分析,把工作开关的接通时间Ton全部进行压缩了。

在实际应用中,储能滤波电容器不可能刚好用6个工作周期就可以把电压被充电到最大值,一般都要经过好十几个周期后,储能滤波电容器两端的电压才能被 充电到最大值。例如:设变压器次级线圈的电感量为10微亨,储能滤波电容的容量为1000微法,由此可求得:ω = 10000,或F = 1592Hz,T = 628微秒,四分之一周期为157微秒;设开关电源的工作频率为40kHz,D = 0.5,由此可求得,T = 25微秒,半个周期为12.5微秒;最后我们可以求得,需要经过12.56个工作周期,即314微秒后,储能滤波电容才能充满电。

上面的结果,还没有考虑负载电流对储能滤波电容充电的影响。由于负载电流会对储能滤波电容充电产生分流,使电容充电速度变慢;另外,反激式开关电源 的占空比一般都小于0.5,会使变压器次级线圈输出电流产生断流,如果把这些因素全部都考虑进去,储能滤波电容充满电所需要的时间要比上面计算结果大好几倍。

另外,反激式开关电源的占空比是根据输出电压的高低不断地改变的。在进行开关电源电路设计的时候,一定要注意,开关电源在输入电源刚接通时候,由于 开关电源刚开始工作的时候,储能滤波电容器刚开始充电,电路会产生过渡过程;在输入电源刚接通的瞬间,储能滤波电容器两端的电压很低,输出电压也很低,通 过取样控制电路的作用,可能会使工作开关的占空比很大,从而会使变压器铁心饱和,电源开关管过流或过压而损坏。

为了分析简单,在图1-23和图1-24中,都没有把负载电流的作用考虑进去,如果考虑负载电流的作用,电容器进行充电时电压上升率会降低,同时在 开关接通期间,因电容器要向负载放电,电容器两端的电压也会下降。储能滤波电容进行充电时,电容两端的电压是按正弦曲线的速率变化,而储能滤波电容进行放 电时,电容两端的电压是按指数曲线的速率变化。

[p]

为了证明电容两端的电压是按指数曲线的速率变化,我们对图1-19中的电容充放电过程进一步进行分析。当开关接通时,由于变压器次级线圈输出电压极性相反使整流二极管反偏截止,储能滤波电容开始对负载放电,电容放电电流由下式决定:

其中a为任意常数,当t = 0时,电容两端的电压为Uc,为此求得:

(1-115)式就是计算电容器放电时的公式,其中 μc为电容器两端的电压, Uc为电容刚放电时的初始电压,RC为时间常数,时间常数一般都用τ来表示,即τ = RC。

图 1-25是电容器放电时的电压变化曲线图。电容放电时,电压由最大值开始下降,当放电时间为τ时,电容器两端的电压仅剩37%,当放电时间为2.3τ时, 电容器两端的电压仅剩10%,当放电时间为无穷大时,电容器两端的电压为0。但在实际应用中,开关电源的工作频率一般都很高,即电容器的放、电时间非常 短,因此,电容器每次放电下降的电压相对来说非常小,电压纹波相对于输出电压只有百分之几,因为储能滤波电容的容量一般都很大。

这里顺便指出,开关电源储能滤波电容的充、放电时间常数一般都很大,是开关电源工作频率周期的几十倍,乃至几百倍,因此,储能滤波电容或是按正弦曲 线规律充电,或是按指数规律放电,我们都可以把它当成是按线性(直线)规律充、放电。因为,正弦曲线或指数曲线在初始阶段的曲率变化非常小。所以,前面在 对开关电源的电路参数进行分析时,基本上都是采用平均值的概念进行分析,并且把波形基本上也都画成方波(矩形)或锯齿形。

采用平均值的方法来对很复杂的问题进行分析,往往可以使复杂问题简单化,这对于工程设计或计算来说是非常简便的,并且分析或计算结果对于工程应用来说已经足够准确,因此,我们后面主要都是采用这种简便方法。

1-7-3.反激式变压器开关电源电路参数计算

反激式变压器开关电源电路参数计算基本上与正激式变压器开关电源电路参数计算一样,主要对储能滤波电感、储能滤波电容,以及开关电源变压器的参数进行计算。

[p]

1-7-3-1.反激式变压器开关电源储能滤波电容参数的计算

前面已经详细分析,储能滤波电容进行充电时,电容两端的电压是按正弦曲线的速率变化,而储能滤波电容进行放电时,电容两端的电压是按指数曲线的速率 变化,但由于电容充、放电的曲率都非常小,所以,把图1-19反激式变压器开关电源储能滤波电容两端电压的充、放电波形画成了锯齿波,这也相当于用曲率的 平均值来取代曲线的曲率,如图1-26所示。

图1-26中,uo是变压器次级线圈输出波形,Up是变压器次级线圈输出电压正半周波形的峰 值,Up-是变压器次级线圈输出电压负半周波形的峰值,Upa是变压器次级线圈输出电压波形的半波平均值,uc是储能滤波电容两端的电压波形,Uo是反激 式变压器开关电源输出电压的平均值,i1是流过变压器初级线圈的电流,i2是流过变压器次级线圈的电流,Io是流过负载两端的平均电流。

从图1-26可以看出,反激式变压器开关电源储能滤波电容充、放电波形与图1-7反转式串联开关电源储能滤波电容充、放电波形(图1-8-b))基 本相同,只是极性正好相反。因此,图1-19反激式变压器开关电源储能滤波电容参数的计算方法与图1-7反转式串联开关电源储能滤波电容参数的计算方法完 全相同。反激式变压器开关电源储能滤波电容参数的计算,除了参考图1-7以外,还可以参考前面串联式开关电源或反转式串联开关电源中储能滤波电容参数的计 算方法,同时还可以参考图1-6中储能滤波电容C的充、放电过程。

从图1-26中可以看出,反激式变压器开关电源与反转式串联开关电源中的储能电感一样,仅在控制开关K关断期间才产生反电动势向负载提供能量,因 此,即使是在占空比D等于0.5的情况下,储能滤波电容器充电的时间与放电的时间也不相等,电容器充电的时间小于半个工作周期,而电容器放电的时间则大于 半个工作周期,但电容器充、放电的电荷是相等的,即电容器充电时的电流大于放电时的电流。

[p]

从图1-26可以看出,反激式变压器开关电源,流过负载的电流比正激式变压器开关电源流过负载的电流小一倍,流过负载的电流Io只有流过变压器次级 线圈最大电流iLm的四分之一。在占空比D等于0.5的情况下,电容器充电的时间为3T/8 ,电容充电电流的平均值为3iLm/8 ,或3Io/2 ;而电容器放电的时间为 5T/8,电容放电电流的平均值为0.9 Io。因此有:

ΔQ =(3Io/2 ) ×3T/8 =9IoT/16 —— D = 0.5时 (1-116),式中ΔQ为电容器充电的电荷,Io流过负载的平均电流,T为工作周期。电容充电时,电容两端的电压由最小值充到最大值(绝对值),相应的 电压增量为2ΔUc,由此求得电容器两端的波纹电压ΔUP-P为:

(1-118) 式和(1-119)式,就是计算反激式变压器开关电源储能滤波电容的公式(D = 0.5时)。式中:Io是流过负载电流的平均值,T为开关工作周期,ΔUP-P为滤波输出电压的波纹,或电压纹波。一般波纹电压都是取电压增量的峰-峰 值,因此,当D = 0.5时,波纹电压等于电容器充电的电压增量,即:ΔUP-P = 2ΔUc 。

同理,(1-118)式和(1-119)式的计算结果,只给出了计算反激式变压器开关电源储能滤波电容C的中间值,或平均值,对于极端情况可以在平均值的计算结果上再乘以一个大于1的系数。

当开关K工作占空比D小于0.5时,由于流过开关电源变压器次级线圈的电流会不连续,电容器放电的时间将远远大于电容器充电的时间,因此,开关电源 滤波输出电压的纹波将显著增大。另外,开关电源的负载一般也不是固定的,当负载电流增大的时候,开关电源滤波输出电压的纹波也将会增大。因此,设计开关电 源的时候要留有充分的余量,实际应用中最好按(1-118)式计算结果的2倍以上来选取储能滤波电容的参数。

射频工程师养成培训教程套装,助您快速成为一名优秀射频工程师...

天线设计工程师培训课程套装,资深专家授课,让天线设计不再难...

上一篇:新一代离线式LED灯对驱动器IC选择的要求
下一篇:陶显芳开关电源原理与设计系列连载三十四

射频和天线工程师培训课程详情>>

  网站地图