

Advances in High-Performance Ceramic Antennas for Small-Form-Factor, Multi-Technology Devices

Presentation outline

- Market Requirements Driving Multiple
 Antenna Integration & Thinner Packages
- Antenna Design Requirements
- Advantages of Ethertronics IMD Technology
- GPS Antenna Comparison Testing
- Dual frequency products

Trend: Multiple Antennas per Phone

- Common to have 2-4 antennas per phone
- Most popular features with highest attach rates
 - Bluetooth 50%
 - GPS 25%

Trend: Smaller Handsets - Less Volume

- Thin phone trend is accelerating
 - Volumes decreasing ~10% per year
 - Ultra Thin handsets are challenging
 - Utilize ~50% of the average volume

Industry Trendline Cell Phone Volumes

Avg Phone Volume

2004 131 cu.cm

2005 122 cu.cm 2006 106 cu.cm

Ultra Thin 55 cu.cm

Source: Current Analysis

Design Challenges

- Overall device size shrinking
 - More antennas in less space
 - Maximum component height under 2.5mm for Ultra models
- More parasitic elements
 - Speakers, cameras, flex...
- Less quality real estate
 - More I/O connectors on side of the board
- Antenna collocation
 - Diversity or different applications
 - Example: Bluetooth and WiFi integration

Antenna Requirements

Benchmark Dual Band Performance

Isolation and Return Loss of GPS and Bluetooth Antennas installed in cell phone, 60 mm separation

 Typical antenna specifications:

> Better than 10 dB Return Loss

> Better than 20 dB Isolation

 Benchmark phone required 25 dB of isolation to meet OEM performance specifications

Antenna Volume Theory

- Wheeler & Mc Lean provided the basic insights for identifying the real effective volume of embedded antennas
- Wheeler's Formula

$$\frac{\Delta f}{f} = K \times \frac{\text{antenna mode volume}}{\text{(radio wavelength)}^3}$$

- Given constraints on design space, how should one compare two antennas when their "antenna mode volume" will become altered as part of the mechanical design?
 - How close is the nearest metal object?
 - Should coupling effects and consequences be considered?

Antenna Requirements

- Smaller antennas in close proximity
 - With high efficiency above 40% threshold
 - Well-controlled radiation resist performance changes (good for customer as well as designer)
 - Immunity to other frequencies or diversity antennas
 - GPS separation from UMTS-1700, sharing of 2.4 GHz
- How to achieve ideal performance:
 - Decrease interaction between antennas
 - Decrease interaction between phone elements
 - Minimize antenna ground dependence

Key Factors

Isolation Selectivity

Isolation Drives Overall Performance

Isolation describes how an antenna interacts with its surrounding.

How can isolation be improved?

By shaping the antenna's near field away from the perturbations and the absorbers.

ET antenna isolation: 2mm for 0.3% frequency shift

Superior isolation allows:

- better efficiency
- easier integration
- semi-standardized products

IMD Provides Superior Isolation

- ET IMD antennas are more tolerant of interfering objects
 - Hand placement and head significantly impact performance
- GPS signal strength improved by staying on frequency

Return-Loss Chart

@ -1 1.54 1.55 1.56 Ethertronics IMD Free Space

Ethertronics IMD antenna

Isolation Test Results

- GPS Internal antenna example -very sensitive to freq. shift
- IMD antennas stay on frequency even with interference from other objects - e.g., hand

Any current flow on the board becomes a part of the antenna radiating mechanism. When touched, the characteristics of the antenna change.

GPS Antenna Comparisons

Antenna Selectivity

- Highest efficiency does not tell entire story
 - Important to also study the frequency component of antenna's efficiency
- Selectivity ability to reject the frequencies outside its range

Ceramic GPS Antenna Test Bed

Several Variables to Consider

- The antenna may require ground plane removal
- It will excite some of the board, but how much?
 - the board itself could become the antenna
- What about board placement, and distance to nearest interferers, eg a shield can, or a battery
- We developed a test bed, focusing on the isolation, selectivity, efficiency and position of the antenna

Shield Can Separation Test

- Several Tests utilizing metal can as interferer
 - Measure changes in:
 - Efficiency
 - Center frequency
 - At 3 distances
 - 3, 6 and 9mm apart
- Calculate Volume/Area
 - Device size
 - Footprint & placement
 - Real antenna volume
 - Interaction with can
- Keep-out zone is 3D

Efficiency Lowered by Shield Can

- Sample 1, significantly impacted
- Broadband antenna has best performance
- All samples above 40% efficiency threshold in free space

Frequency Shifted by Shield Can

- Sample 1 significantly impacted
- High-efficiency, broadband sample 2 survives shift's impact
- IMD antenna stays rock solid on frequency

Board Position Test Set up

- How often is the best antenna location where one has space to place it?
- Determine how much normal performance can vary from the specified best case...

Typical GPS Antenna Performance

- Average from 3 best positions out of 4 tested
- Samples 1 & 2 show a 5~10% drop from peak efficiency
- IMD stayed consistent across all three locations

"Worst Case" Performance

- Two antennas still above 40% threshold
 - Broadband antenna Sample 2 vs IMD Dual Band, Dual Feed
 - IMD antenna decreased efficiency by 25% vs >50%+ by all others

Summary of Test Results

L ₁ W ₁ H Ground Clearance Real Real Research										
	L_1	W_1	Н	G(C	402	Shi	&eo	Ant	Mes	Observations
Sample 1	10	3	4	3	96	9	336	1,344	65%	Limited Isolation from its environment; significant perf changes
Sample 2	20	3	4	0	60	3	156	624	77%	High Gain, but poor GPS band selectivity; need BPF
Sample 3	8	2	1.5	2	48	3	70	105	46%	Low Efficiency, stable performance, single location usage
ET BT & GPS	14	4	1.3	1	80	3	140	182	68%	Steady performance under all conditions; thinnest package
ET GPS only	10	4	1.3	1	60	3	112	146	68%	Best efficiency to volume ratio
all measurements in mm, sq mm, or cu mm										
Area = $(L_1 + 2x GC) x (W_1 + GC)$							Use L ₂ and W ₂			

- Simple Volume test provided valuable insights on efficiency and freq shifts
- Two antennas excelled throughout
 - Ethertronics and Broadband Sample #2
- Design Tradeoffs include:
 - Keep Out and Ground restrictions
 - Cost & Space needed for Filters

New Antenna Up To Market Challenges

- Phone real estate as pricey as Paris
 - So combining functions is mandatory
 - Yet antennas prefer separation for isolation
- Perform a Best of Performance Criteria Review
 - Compact Size, Great Isolation & Freq Stability
 - Flexible implementation without sacrificing gain
- ET's IMD dual band, dual feed antenna products
 - GPS and Bluetooth sampling now
 - PCS Diversity, WiFi, WiMAX and others in testing

Next Generation of Ceramic Antennas

- Leverages underlying IMD technology
- Dual Band, Dual Feed
 - Ideal implementation

- Peak Efficiency
 - GPS over 68%
 - Bluetooth over 50%

Ethertronics Dual Band, Dual Feed GPS/Bluetooth Antenna

One Antenna Outperforms Two...

Isolation and Return Loss of GPS and Bluetooth Antennas installed in cell phone, 60 mm separation

- Ceramic version improves key results by approx 4 dB
 - GPS isolation

Conclusion

- Smaller and more complex phone designs make antenna design more challenging.
- IMD technology allows smaller designs and better performance in densely populated volumes.
- IMD's isolation and selectivity allow integration of multiple antennas in a single ceramic block.
- Ceramic IMD antennas demonstrate ideal characteristics for next-generation products.

射频和天线设计培训课程推荐

易迪拓培训(www.edatop.com)由数名来自于研发第一线的资深工程师发起成立,致力并专注于微波、射频、天线设计研发人才的培养;我们于2006年整合合并微波EDA网(www.mweda.com),现已发展成为国内最大的微波射频和天线设计人才培养基地,成功推出多套微波射频以及天线设计经典培训课程和ADS、HFSS等专业软件使用培训课程,广受客户好评;并先后与人民邮电出版社、电子工业出版社合作出版了多本专业图书,帮助数万名工程师提升了专业技术能力。客户遍布中兴通讯、研通高频、埃威航电、国人通信等多家国内知名公司,以及台湾工业技术研究院、永业科技、全一电子等多家台湾地区企业。

易迪拓培训课程列表: http://www.edatop.com/peixun/rfe/129.html

射频工程师养成培训课程套装

该套装精选了射频专业基础培训课程、射频仿真设计培训课程和射频电路测量培训课程三个类别共 30 门视频培训课程和 3 本图书教材;旨在引领学员全面学习一个射频工程师需要熟悉、理解和掌握的专业知识和研发设计能力。通过套装的学习,能够让学员完全达到和胜任一个合格的射频工程师的要求…

课程网址: http://www.edatop.com/peixun/rfe/110.html

ADS 学习培训课程套装

该套装是迄今国内最全面、最权威的 ADS 培训教程, 共包含 10 门 ADS 学习培训课程。课程是由具有多年 ADS 使用经验的微波射频与通信系统设计领域资深专家讲解,并多结合设计实例,由浅入深、详细而又全面地讲解了 ADS 在微波射频电路设计、通信系统设计和电磁仿真设计方面的内容。能让您在最短的时间内学会使用 ADS, 迅速提升个人技术能力,把 ADS 真正应用到实际研发工作中去,成为 ADS 设计专家...

课程网址: http://www.edatop.com/peixun/ads/13.html

HFSS 学习培训课程套装

该套课程套装包含了本站全部 HFSS 培训课程,是迄今国内最全面、最专业的 HFSS 培训教程套装,可以帮助您从零开始,全面深入学习 HFSS 的各项功能和在多个方面的工程应用。购买套装,更可超值赠送 3 个月免费学习答疑,随时解答您学习过程中遇到的棘手问题,让您的 HFSS 学习更加轻松顺畅···

课程网址: http://www.edatop.com/peixun/hfss/11.html

CST 学习培训课程套装

该培训套装由易迪拓培训联合微波 EDA 网共同推出,是最全面、系统、 专业的 CST 微波工作室培训课程套装, 所有课程都由经验丰富的专家授 课,视频教学,可以帮助您从零开始,全面系统地学习 CST 微波工作的 各项功能及其在微波射频、天线设计等领域的设计应用。且购买该套装, 还可超值赠送3个月免费学习答疑…

HFSS 天线设计培训课程套装

套装包含6门视频课程和1本图书,课程从基础讲起,内容由浅入深, 理论介绍和实际操作讲解相结合,全面系统的讲解了 HFSS 天线设计的 全过程。是国内最全面、最专业的 HFSS 天线设计课程,可以帮助您快 速学习掌握如何使用 HFSS 设计天线, 让天线设计不再难…

课程网址: http://www.edatop.com/peixun/hfss/122.html

13.56MHz NFC/RFID 线圈天线设计培训课程套装

套装包含 4 门视频培训课程,培训将 13.56MHz 线圈天线设计原理和仿 真设计实践相结合,全面系统地讲解了13.56MHz线圈天线的工作原理、 设计方法、设计考量以及使用 HFSS 和 CST 仿真分析线圈天线的具体 操作,同时还介绍了 13.56MHz 线圈天线匹配电路的设计和调试。通过 该套课程的学习,可以帮助您快速学习掌握 13.56MHz 线圈天线及其匹 配电路的原理、设计和调试…

详情浏览: http://www.edatop.com/peixun/antenna/116.html

我们的课程优势:

- ※ 成立于 2004年, 10 多年丰富的行业经验,
- ※ 一直致力并专注于微波射频和天线设计工程师的培养,更了解该行业对人才的要求
- ※ 经验丰富的一线资深工程师讲授,结合实际工程案例,直观、实用、易学

联系我们:

- ※ 易迪拓培训官网: http://www.edatop.com
- ※ 微波 EDA 网: http://www.mweda.com
- ※ 官方淘宝店: http://shop36920890.taobao.com

易迪拓信训 官方网址: http://www.edatop.com