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1 Problem

Antennas for hand-held communication devices are necessarily small, and typically use wave-
lengths λ that are large compared to the size of the antenna. This typically implies that
the magnitude of the antenna reactance X (= imaginary part of the antenna impedance) is
large compared to that of its radiation resistance Rrad (which is related to the time-average
radiated power P and the peak current I0 at the feedpoint by P = I2

0Rrad/2), so that it is
challenging to build an effective impedance matching circuit between the feedline and the
antenna. Furthermore, small antennas use small conductors so it may be that the Ohmic
resistance ROhm of the antenna is significant compared it radiation resistance,1 which lowers
the antenna efficiency, defined as

Antenna Efficiency =
Rrad

Rrad + ROhm

. (1)

It is possible to lower the reactance of an antenna by changing the shape of its conductors
without increasing the overall size of the antenna. If the length and complexity of the shape
of the antenna conductors is increased while keeping the overall area of the antenna constant,
we create what is sometimes called a fractal antenna. Details of the antenna reactance of
fractal antennas are best calculated with a numerical code such as NEC4. Here you are asked
to use relatively simple analytic arguments to discuss the radiation (and Ohmic) resistance
of a planar fractal antenna that fits within a square of edge length a ¿ λ

Show that the radiation resistance of a fractal loop antenna is smaller than that of a
simple loop antenna of the same extent a. Show that the radiation resistance of a dipole
antenna based on a dense (Hilbert) fractal pattern is essentially identical to that of a simple
linear dipole antenna of the same total height a ¿ λ, even if the total length L of the
conductor is of order λ.

Then, since the Ohmic resistance of a fractal antenna is necessarily larger than that of a
simple dipole or loop antenna of the same overall extent, the efficiency (1) of a fractal antenna
is lower than that of the simpler antenna. Nonetheless, in some cases the lower reactance of
the fractal antenna may provide a useful advantage in simplifying the feed electronics of the
antenna system.

2 Solution

We first discuss small fractal antennas as receiving antennas. This discussion will be some-
what qualitative, so we follow it with more quantitative discussion of their behavior as

1The antenna impedance is Z = Rrad + ROhm + iX, where i =
√−1.
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broadcast antennas. The antenna reciprocity theorem [1] guarantees that a good broadcast
antenna is also a good receiving antenna.

2.1 Remarks about Receiving Antennas

A receiving antenna can be considered as a 2-terminal device whose purpose is to produce a
voltage (that can be amplified externally, and demodulated to produce an audio signal, etc.)
in response to an electromagnetic wave. If the conductor of an antenna fits within a square
of edge a that is small compared to the wavelength λ of the electromagnetic wave that is to
be detected, then the electric and magnetic fields E and B have negligible spatial variation
over the antenna at any moment in time.

If the receiving antenna is a dipole, then it responds primarily to the electric field of the
wave. Clearly, the largest voltage drop across the antenna, is just the field strength E times
the largest spatial dimension of the antenna. That is

Vmax =
√

2aE (small dipole antenna), (2)

independent of the detailed arrangement of the conductor within the square of edge a.2 We
immediately infer that a small fractal dipole antenna cannot be superior to an ordinary small
dipole antenna if their overall spatial extents are the same.

In practice, the signal from a small dipole antenna is more like 1/2 of the maximal
voltage (2). This is because a signal in a dipole antenna is based on the induced electric
dipole moment p = qd, which depends on the distance d between the centers of each arm of
the antenna, which is typically half the distance between the tips.

A loop antenna responds primarily to the magnetic field of the broadcast wave, via
Faraday’s law. That is, the 2-terminal signal voltage is proportional to time rate of change
of the magnetic flux through the antenna, which is proportional to the area of the antenna,

V ∝ dΦ

dt
∝ ωBArea (small loop antenna), (3)

where ω = 2πf is the angular frequency of the (carrier) wave.3 Thus, if a loop antenna fits
within a square of edge a, the signal will be strongest if the shape is simply a square of edge
a. A fractal shape for the conductor reduces the area of the antenna (provided it still fits
within a square of edge a), and hence reduces its effectiveness as a small loop antenna.

The power extracted from the incident wave by an antenna depends on the effective
impedance Z of the combination of the antenna plus receiving circuit, according to P =
Re(V 2/2Z). If the total impedance of a small antenna + receiving circuit can be made
small, the small antenna can extract just as much power from the incident wave as the
large antenna. Hence, understand of antenna reactance is important for receiving as well as
broadcast antennas. This note, however, limits its further discussion to the real part of the
antenna impedance.

We now turn to a discussion of small antennas as broadcast devices.
2The maximal signal voltage can be achieved only with proper alignment of the antenna with respect to

the electric field of the wave; i.e., the arms of the dipole should be parallel to the electric field vector E.
3The maximal signal voltage in a loop antenna is achieved when the axis of the loop is parallel to the

magnetic field B of the wave.
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2.2 Radiation Resistance of Small Linear and Loop Antennas

A simple measure of the performance of a broadcast antenna is its radiation resistance Rrad,
which relates the (time-averaged) radiation power P to the peak current I0 that drives the
antenna, according to

P =
1

2
I2
0Rrad. (4)

A higher radiation resistance is better, in that more power is radiated compared to the power
I2
0ROhm/2 lost to heating the antenna due to the ordinary resistance ROhm of its conductor.

2.2.1 Small Center-Fed Linear Dipole Antenna

Recall that the radiation resistance of a center-fed, linear dipole antenna of length a ¿ λ is

Rrad =
(

a

λ

)2

197 Ω, (center-fed linear dipole), (5)

assuming that the current drops linear between the center of the antenna (the feed point)
and the tips (where the current must be zero)[2]. The radiation resistance of a small linear
dipole antenna of length a falls off as (a/λ)2.

2.2.2 Small Loop Antenna

Likewise, the radiation resistance of a small loop antenna of area A is [3]

Rrad =
(

A

λ2

)2

31, 170 Ω, (loop), (6)

independent of the shape of the loop provided its longest diameter (or diagonal) is small
compared to λ. The radiation resistance of a small, square, loop antenna of edge a falls off
as (a/λ)4. For a <∼ λ/12, a loop antenna has lower radiation resistance than that of a linear
dipole antenna.

2.3 Small Fractal Antennas

Turning now to the question of the merits of a fractal antenna whose largest dimension a
is still small compared to the wavelength λ, we note that this condition implies that phase
differences are negligible between the radiation from different parts of the antenna. In this
case, it suffices to analyze the radiation in the dipole approximation. That is, all details of
the radiation pattern follow from knowledge of the electric and magnetic dipole moments of
the charge and current distributions in the antenna.

2.3.1 Small Fractal Antennas with Conductor Length ¿ λ

If the total length of the conductor in the antenna is also small compared to λ, an additional
simplification holds. For a loop antenna, the (instantaneous) current I is uniform throughout
the antenna, so the magnetic moment is simply IA, and eq. (6) still holds for the radiation
resistance of the loop antenna.
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The area of a fractal loop antenna is less than that of the geometric figure on which the
fractal loop is based, as shown in Fig. 1. Therefore, the radiation resistance of a fractal loop
antenna is lower than that of the corresponding simple loop antenna.

Figure 1: Two examples of the pattern of the conductor in fractal loop anten-
nas.

In a center-fed dipole antenna whose conductor has total length L that is small compared
to λ, the current distribution falls off linearly with distance l along the conductor from the
central feed points to the tips (at l = ±L/2)of the antenna. That is,

I(l, t) = I0

(
1− 2 |l|

L

)
e−iωt, (7)

taking distance l (which is measured along the conductor, from the central feed point) to be
positive on one arm of the antenna and negative along the other.

The equation of continuity for charges and currents (charge conservation) can be written
in general as ∇·J = −∂ρ/∂t, where J is the current density and ρ is the charge density. For
the case of a dipole antenna made from a pair of wires, the equation of continuity becomes4

ρ(l, t) =
i

ω

∂ρ

∂t
= − i

ω

∂I

∂l
= ±2iI0

ωL
e−iωt. (8)

The instantaneous current distribution is uniform in each arm of the antenna, but with
opposite signs in the two arms. The total charge Q± on each of the arms is

Q±(t) = ±iI0

ω
e−iωt, (9)

which is independent of the length L of the conductor.
We take the plane of the fractal dipole antenna to be the x-y plane, with the feed point

at the origin. The pattern of the conductor is symmetric about the x axis. Hence, the

4Equation (8) holds only if the radius of curvature of the “kinks” in the fractal pattern is larger than
the diameter of the conductor. This condition will always be met in any practical application of the fractal
antenna concept.
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Figure 2: The pattern of one arm of a Hilbert fractal dipole antenna. From
[4]. For the calculations in the text, the origin is taken at the feed point, the
x axis is horizontal and the y axis is vertical. The patterns of fractal dipole
antennas are obtained by reflecting the patterns in the figure about the x axis.

Figure 3: The pattern of one arm of a Koch fractal dipole antenna. From [5].
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antisymmetry of the charge distribution (8) implies that the x component of the electric
dipole moment vanishes. For a fractal dipole antenna pattern such as the Hilbert pattern
shown in Fig. 2, for which the conductor is in effect uniformly distributed along the y axis
and whose total extent along the y axis is a, the y component of the electric dipole moment
is

py(t) =
∑

i

Qiyi = Q+

(
a

4

)
+ Q−

(
−a

4

)
=

iI0a

2ω
e−iωt, (10)

which is identical to the result for a short linear dipole antenna of length a ¿ λ [2]. The
time-averaged radiated power P is therefore (in Gaussian units)

P =
|p̈y|2
3c3

=
I2
0a2

12c

ω2

c2
=

I2
0

2

2π2

3c

a2

λ2 ≡
I2
0

2
Rrad. (11)

Noting that 1/c = 30 Ω, the radiation resistance of a small fractal dipole antenna of total
length L ¿ λ is

Rrad =
(

a

λ

)2

197 Ω, (fractal center-fed dipole, L ¿ λ), (12)

which is identical to that of a small linear dipole antenna, as given by eq. (5).
For a dipole antenna based on the Koch fractal, shown in Fig. 3), we see that the distri-

bution of segments is not uniform along the y axis. However, the fractal pattern in each arm
is symmetric about the midheight of each arm, so the dipole moment of each arm is still the
total charge on the arm times the height of the midpoint of the arm, as in eq. (10). Hence,
the result (12) holds for the radiation resistance of a Koch dipole antenna as well.

In sum, we have found that the radiation resistance, and hence also the antenna efficiency
(1), of small fractal dipole and loop antennas is not better than that of simple dipole and
loop antennas of the same overall extent, provided the total length L of the conductor is also
small compared to the wavelength λ.

2.3.2 Small Fractal Dipole Antennas with Conductor Length ≈ λ

Since the area of a fractal loop antenna of extent a is little changed from the area of a
simple loop of extent a, the radiation resistance of the fractal loop antenna is little different
(although always smaller) than that of the simple loop antenna, even when the conductor
length L of the fractal antenna becomes large compared to a. Hence, we do not pursue this
case further.

To analyze a fractal dipole antenna whose conductor has total length L <∼ λ, we need a
model of the current distribution I(l, t). The current distribution will be symmetric about
l = 0, and will vanish at the tips of the antenna: I(±L/2, t) = 0. Noting these constraints,
we can make a Fourier analysis of the current distribution based on the functions
sin[nkL/2(1− 2 |l| /L)], n = 1, 2, 3,..., where k = ω/c = 2π/λ. Thus,

I(l, t) = I0

∑
n An sin

[
nkL
2

(
1− 2|l|

L

)]

∑
n An sin

(
nkL
2

) e−iωt, (13)
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where I0 is the current at the feed point if L ≤ λ/2. (For L > λ/2 the peak current does
not occur at the feed point.) The case kL = π (L = λ/2) could be called a fractal half-wave
antenna. If the fractal segments of the antenna have length L/n, Fourier coefficients with
n <∼ N may be important. When modeling a linear dipole antenna, the usual approximation
[2] is to take A1 = 1 and set all other Fourier coefficients to zero.

We do not have a simple method to evaluate the Fourier coefficients An, but it turns out
that we will not need to know these coefficients if the antenna has a dense fractal pattern!

Because the extent a of the fractal antenna is still small compared to λ, we can continue to
calculate in the dipole approximation. For this we need the charge distribution corresponding
to eq. (13), which we obtain following the logic of eq. (8),

ρ(l, t) = − i

ω

∂I

∂l
= ±iI0

c

∑
n nAn cos

[
nkL
2

(
1− 2|l|

L

)]

∑
n An sin

(
nkL
2

) e−iωt. (14)

We need the electric dipole moment of this charge distribution. Again px = 0, while

py(t) =
iI0

c
∑

n An sin
(

nkL
2

)e−iωt
∫ a/2

−a/2
±y dy

∑
n

nAn cos

[
nkL

2

(
1− 2 |l(y)|

L

)]

=
2iI0

c
∑

n An sin
(

nkL
2

)e−iωt
∫ a/2

0
y dy

∑
n

nAn cos

(
nkL

2
− nkl(y)

)
. (15)

For a high-order Hilbert fractal pattern, the function l(y) for y > 0 takes on essentially all
values between 0 and L/2 with equal probability. Hence, we can approximate cos(nkL/2−
nkl) by its average on the interval [0, L/2], i.e., by

2

L

∫ L/2

0
dl cos(nkL/2− nkl) =

sin(nkL/2)

nkL/2
. (16)

We must also note that the function l(y) is multiple valued in the case of a Hilbert fractal
pattern; at each height y, there are L/a segments of the fractal. Hence, in eq. (15) we replace
cos(nkL/2 − nkl) by L/a times the average value (16), i.e., by sin(nkL/2)/(nka/2). The
Fourier series in the numerator and denominator of eq. (15) are now identical, so we obtain

py(t) ≈ iI0a

2ω
e−iωt (Hilbert fractal dipole, L ≈ λ). (17)

This is a remarkable result. Use of a dense (Hilbert) fractal pattern of total length L ≈ λ
for the dipole antenna leads to a radiation resistance that is essentially identical to that of a
simple linear dipole antenna of the same total height a, assuming that the antenna is small
(a ¿ λ).

This conclusion is based on the assumption of a Hilbert fractal pattern (Fig. 2), which
permitted the approximation (16). In the case of a Koch fractal pattern (Fig. 3), this
approximation does not hold, so perhaps slight improvements over simple linear dipoles are
possible here when L ≈ λ. Further, one may choose to use a low-order fractal pattern,
rather than a high-order one (which is hard to construct). There may be slight advantages
in appropriately chosen low-order fractal dipoles over a simple linear dipole antenna [6].

7



2.4 Antenna Reactance

The preceding discussion has emphasized only the radiation resistance (which is the real part
of the antenna impedance if we ignore the Ohmic resistance ROhm). In general, antennas
present a nonzero reactance (i.e., imaginary part of the antenna impedance) to their power
source. If the magnitude of the reactance is large compared to the radiation resistance, as is
typically the case for small antennas, the rf power supply voltage must be larger than would
be the case were the reactance equal to zero.

In practice, there is a preference for antennas whose reactance is small compared to their
radiation resistance. The ideal case of zero reactance has come to be called “resonance”.
The lowest resonant frequency for a center-fed dipole antenna of length L occurs when the
wavelength is roughly L/2. At lower frequencies, the reactance of the dipole antenna is
capacitive. Hence it is favorable to add an inductive reactance in series with a short dipole
antenna to bring the total reactance close to zero.

Rather than using an external inductor, it is possible to modify the shape of the antenna
so as to increase its inductive reactance, and correspondingly lower the (lowest) resonant
frequency of the antenna.

A possible interest in fractal antennas is that they tend to have lower total reactance
than a dipole antenna of the same overall size, and hence their resonant frequencies are
lower. For example, a 3rd-order Hilbert fractal antenna can have resonant frequencies only
1/6 those of a dipole antenna of the same size [4]. This reduction in antenna reactance is
achieved by the used of much longer conductors in the antenna, so the ordinary resistance of
a fractal antenna can become significant if small diameter wires are used, thereby reducing
the efficiency of the antenna.

Whether fractal antennas offer practical advantage over classic methods of controlling the
antenna reactance (see, for example, secs. 21-2 and 21-5 of [1]) is a matter for detailed study,
either in the laboratory or on a computer with a numerical electromagnetic code (NEC).
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