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Abstract The missile warhead has an effect on the back scattering. In order to exactly imitate the contour of the

missile warhead in the FDTD modling the superspheriod body is successfully applied. The shapes of several warheads

are given by adjustion the factor v value in the superspheroidal equation. The superspheroid with optimized exponent

value v =1.381 can almost exactly reproduce the traditional Von Karman radome geometry. The superpheroids are

mathematically easy can approximate most of the traditional radome geometries quite well. At the same time

two

models at the warhead of the missile are computed by FDTD method. One is the spherical warhead the other is su-

perspheriod  which can model a number of shapes such as Von Karman radome available for warhead. The calculat-

ed results of the back scattering impinging head-on and broadside are presented ~demonstrating that the superspheriod

warhead model can effectively reduce the radar cross sections.
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