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摘 要： 本文提出三重 Toepiitz线性方程组预条件共轭梯度法，并将该法与快速付里叶变换（FFT）结合 .这种结
合算法称为 PCGFFT.将 PCGFFT应用于振子阵列天线的 RCS分析中 .由于预条件器的使用，系数矩阵的条件数得到了
很大改善 .数值结果表明，PCGFFT不仅降低了对计算机内存的需求，加快了迭代速度而且提高了算法的收敛性 .
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Application of Preconditioned Conjugate Gradient Method
to RCS Analysis of Large Dipole-Array Antennas
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Abstract： The preconditioned conjugate gradient method（PCG）for soiving tripie Toepiitz iinear systems is put forward and is
combined with the fast Fourier transform（FFT）. The combining aigorithm，caiied PCGFFT，is appiied to RCS anaiysis of iarge dipoie-
array antennas. Because of the preconditioner，the condition number of the coefficient matrix is iargeiy improved. The numericai resuits
show that PCGFFT reduces the need for computer memory，speeds the iteration and enhances the convergence.
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! 引言
在用矩量法（MOM）求解电磁问题的过程中，所得线性方

程组的系数矩阵是一个 n 阶满阵 .文献［1］首次详细地介绍
了一种所需内存少，且求解速度快的算法，即共轭梯度法

（CG）与快速付里叶变换（FFT）的结合算法（CGFFT）.在应用中
发现，系数矩阵的条件数对共轭梯度法的收敛速度有很大影

响 .事实上，FFT的使用只是加快了共轭梯度法的迭代速度，
并没有改变其收敛速度 .共轭梯度法的收敛速度取决于系数
矩阵的条件数 .本文在计算大型振子阵列天线的雷达散射截
面（RCS）时，采用了 PCGFFT，即预条件共轭梯度法（PCG）与快
速付里叶变换的结合算法 .基于 T. Chan优化循环预条件器的
基本原理，给出三重 Toepiitz矩阵预条件器的构造方法 .预条
件器的使用使系数矩阵的条件数得到了很大改善 .数值结果
表明，PCGFFT不仅降低了对计算机内存的需求，加快了迭代
速度而且提高了算法的收敛性 .

" 数学模型

平面阵列和圆柱阵列振子天线的几何结构如图 1和图 2
所示 .每根振子长度为 L，振子横截面半径为 a .在平面阵列

中，x 方向的振子数目为 P，相邻振子端点间距为!x；y 方向
的振子数目为M，相邻振子中心间距为!y .在圆柱阵列中，沿
圆周方向均匀分布 M 根振子，沿 x 方向的振子层数为 P，层
间相邻振子端点间距为!x .对振子阵列天线进行 RCS分析要
考虑到振子间的互偶作用，为此，考虑振子阵列天线的 Pock-
iington积分方程组［2］
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图 1 平面阵列与坐标系 图 2 圆柱阵列与坐标系

u = 0，1，⋯，M - 1，1 = 0，1，⋯，P - 1，其中 Ei \［u，1］
t （ x）是入射
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电场在第［U，1］根导线上的切向场量分布，I［U，1］（ x）是第［ U，
1］根导线上的电流分布，r（U1，U'1'）是第［ U'，1'］根导线上源点
到第［U，1］根导线上场点的距离， 是虚数单位，k 是自由空
间波数 .将每根导线等分成 N + 1段，选用脉冲函数为基函数
的 Galerkin法将式（1）转化为线性方程组

TY = B （2）
下面以平面阵列为例来说明广义阻抗矩阵 T 的构造 . T 是一
个 PMN阶的三重对称复 Toeplitz矩阵
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其中 T1 - m是 Tm - 1的转置矩阵，即 T1 - m = TT
m- 1（m = 2，3，⋯，

M），而
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广义电压列向量 B的分块方法与 T的分块方法相对应
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0SUSM - 1，0S 1SP - 1，0SwSN - 1 .电流列向量 Y 有类
似的分块结构 .

3 预条件共轭梯度法（PCG）

用预条件共轭梯度法求解线性代数方程组（2）的法方程
C - T TC - 1X = C - T B （3）

其中，C是一个适当选择的预条件器，C - 表示 C - 1的共轭

转置，而 X = CY .考虑到数值稳定性，也为了减小对计算机内
存需求，采用共轭梯度法的析因形式［4，7］，这样就不必生成线

性方程组（3）的系数矩阵 .

4 预条件器 C 的构造

根据 T. Chan构造优化循环预条件器的基本思想［3］，构造
一个 PMN阶的三重分块循环矩阵

C = circ［C0，⋯，CM - 1］，

CU = circ［C（U，0），⋯，C（U，P - 1）］，

C（U，1）= circ［ c（U，1，0），⋯，c（U，1，N - 1）］，

（注：本文对循环阵（或分块循环阵）用其第一列元（或块）来表

示），其中元素 c（U，1，w）如下产生

 c（U，1，w）=
（N - w）·t（U，1，w）+ w·t（U，1，N - w）

N ，

ĉ（U，1，w）=
（P - 1）· c（U，1，w）+ 1· c（U，P - 1，w）

P ，

c（U，1，w）=
（M - U）·ĉ（U，1，w）+ U·ĉ（M - U，1，w）

M ，

0SUSM - 1，0S 1S P - 1，0S wSN - 1 .在所有的 PMN 阶
的三 重 分 块 循 环 矩 阵 中，C 极 小 化 Frobenius 范 数

 C - T F .在这个意义上，C - 1被看作 T 的一个近似逆矩

阵 . TC - 1的条件数可能比 T 的条件数小得多，从而达到预条
件的目的 .

5 矩阵向量积 TX 的实现

第一步：将 T嵌入一个 2PMN阶的三重分块矩阵 T̂
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0SISM - 2，VM - 1 = 0 . T̂ 可以看成是一个 2PMN阶的二重对
称复 Toeplitz矩阵，记为
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第二步：将 T̂ 嵌入一个 8PMN阶的循环矩阵

(

T（细节详见
文献［3］）.
现在将 PMN维的列向量 X通过添加零元素扩展成一个

8PMN维的列向量

(

X，使得 X在

(

X 中的行号与 T 在

(

T 中的列

号（行号）一致 .利用快速付里叶变换计算

( (

TX，从而得到 TX .

在计算 TX 的实际程序中，只需要存储循环矩阵

(

T 的特征
值［3，7］，而不必存储 T .

6 方程组 CY = X 的快速求解

在 PCG算法中要涉及矩阵向量积 C - 1X .事实上，不必求
出 C - 1，因为求 C - 1X等价于解方程组 CY = X .用 FI 表示 I
阶离散付里叶矩阵［8］，F I 是其共轭转置，用 Im 表示 m 阶单
位矩阵，用 表示矩阵张量运算［6］.如果 Z 是一个 I 维列向
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量，则 FIZ = 1
 I
·fft（Z），F I Z = I·ifft（Z），其中符号 fft和 ifft

分别是表示快速付里叶正变换和逆变换 .方程组 CY = X 等
价于!（ IPM FN）Y =（ IPM FN）X 其中矩阵!的构造见附
录 .记 Y =（ IPM FN）Y， X =（ IPM FN）X，则方程组! Y = X
等价于 N个独立的方程组 A（w） Y（w）= X（w），其中矩阵 A（w）的

构造见附录，而列向量 Y（w）， X（w）分别由 Y， X 的与 A（w）相对

应的 分 量 构 成 . 方 程 组 A（w） Y（w） =  X（w）等 价 于

 !（w）（ IM FP） Y（w）=（ IM FP） X（w），其中矩阵 !（w）的构造

见附录 .记  Y（w）=（ IM FP） Y（w）， 
 X（w）=（ IM FP） X（w），则

方程组 !（w） 
 Y（w）= 

 X（w）又等价于 M 个独立的方程组 A（ 1，w）

  Y（ 1，w）= 
 X（ 1，w），其中矩阵 A（ 1，w）的构造见附录，而列向量

  Y（ 1，w）= 
 X（ 1，w）分别由 Y（w）， X（w）的与 A（ 1，w）相对应的分量构

成 .方程组 A（ 1，w） 
 Y（ 1，w）= 

 X（ 1，w）可以利用 FFT来求解［8］.到
此可见，方程组 CY = X可以借助于快速付里叶变换求解 .在
求解 CY = X的实际程序中，只需要存储循环矩阵 A（ 1，w）的特

征值［3，7］，而不必存储 C .

7 数值结果
CG，CGFFT和 PCGFFT都只是求解由矩量法所得线性方

程组的算法，都不改变矩量法的精度 .因此，下面的数值算例
旨在检验预条件器对改善系数矩阵条件数的效果 . S（ I）表示

第 I 次迭代的余向量，每次计算取停机准则为 S（ I） /
 S（0） < 10- 3 .所有的计算都是在 CELERON633 机上完成
的 .!是自由空间中波长 .曲线图中，RCS是以对数形式给出，
即相对于 1m2的分贝数 RCS / dbsm = 10lg（RCS）.在下面总取 L
=0.46!，a = 0.0078125!.每根振子 33 等分 .计算单站 RCS
时，每隔 0.5度计算一个样点 .时间计量单位均为 CPU时间 .
CG，CGFFT和 PCGFFT的计算结果完全重合 .
7.1 平面阵列的单站 RCS
设平面振子阵列天线为：x 方向排列 4根振子，y 方向排

列 8根振子，!x = 0.35!，!y = 0.7!.（1）入射平面波为 TM波
（水平极化）.图 3是平面阵列的单站 RCS. CG耗 4866.67秒 .
CGFFT耗 2131.66秒 .PCGFFT耗 715.38秒 .（2）入射平面波为
TE波（垂直极化）.图 4是平面阵列的单站 RCS. CG耗 4004.29
秒 .CGFFT耗 1756.9秒 . PCGFFT耗 682.4秒 .
7.2 圆柱阵列的单站 RCS
设圆柱形阵列天线为：圆柱横截面周长 7!，柱面均匀分

布 10根振子，x 方向排列 4层振子，!x = 0.35!.入射平面波
为 TM 波（水平极化）.图 5 是圆柱阵列的单站 RCS. CG 耗
14935.83秒 .CGFFT耗 6423.09秒 . PCGFFT耗 3149.87秒 .

图 3 平面阵列单站 RCS值随入射角的变化 图 4 平面阵列单站 RCS值随入射角的变化 图 5 圆柱阵列单站 RCS值随入射角的变化

图 6 平面阵列双站 RCS值随散射角的变化

7.3 平面阵列的双站 RCS
设平面振子阵列天线为：x 方向排列 24根振子，y 方向

排列 32根振子，!x = 0.35!，!y = 0.7!.（1）入射平面波为 TM
波（水平极化），入射角为 85度 .图 6是平面阵列的双站 RCS.
CGFFT耗 2198.78秒 .PCGFFT耗 1151.02秒 .（2）入射平面波为

TE波（垂直极化），入射角为 85 度 .图 7 是平面阵列的双站
RCS. CGFFT耗 1650.07秒 .PCGFFT耗 682.4秒 .

图 7 平面阵列双站 RCS值随散射角的变化

通过上面的数值算例看到，预条件器对改善系数矩阵条

件数有明显的效果 .一般地，阵列的电尺寸越大，预条件的效
果就越明显 .
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! 结论

本文介绍了如何在大型振子阵列天线的 RCS分析中应
用 PCGFFT.预条件器的使用一方面减少迭代次数，同时也使
每一次迭代的运算量有所增加 .为此，可采用不含旋转因子的
素因子 FFT，使附加的运算量尽可能降低 .实际上，涉及预条
件器的矩阵向量积可以并行化，因此在有并行机的条件下，附

加运算量所耗 CPU时间可以是很少的 .在电磁计算领域，还
有不少问题在用矩量法求解时都可以产生分块 Toepiitz矩阵，
因此，PCGFFT可望在电磁领域的更多问题中发挥作用 .

附录

本文第 6节中所涉及的矩阵如下：
（1）矩阵!的构造为

! = circ［!0，⋯，!M - 1］，

!u = circ［!（u，0），⋯，!（u，P - 1）］，

!（u，1）= diag［!（u，1，0），⋯，!（u，1，P - 1）］.
其中!（u，1，w）是 !（u，1）的特征值，可以利用 FFT求得［3，7］.
（2）矩阵 "（w）的构造为

"（w）= circ［"（0，w），⋯，"（M - 1，w）］

"（u，w）= circ［!（u，0，w），⋯，!（u，P - 1，w）］.
（3）矩阵!!（w）的构造为

!!（w）= circ［!!（0，w），⋯，!!（M - 1，w）］，

!!（u，w）= diag［"!（u，0，w），⋯，"!（u，P - 1，w）］.
"!（u，1，w）是 "（u，w）的特征值［3］，可以利用 FFT求得［3，7］.
（4）矩阵!"（ 1，w）的构造为

!"（ 1，w）= circ［"!（0，1，w），⋯，"!（M - 1，1，w）］.
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专注于微波、射频、天线设计人才的培养 易迪拓培训
网址：http://www.edatop.com  

雷达散射截面（RCS）分析培训课程 

易迪拓培训(www.edatop.com)由数名来自于研发第一线的资深工程师发起成立，致力和专注于微

波、射频、天线设计研发人才的培养，是国内最大的微波射频和天线设计人才培养基地。客户遍布中

兴通讯、研通高频、国人通信等多家国内知名公司，以及台湾工业技术研究院、永业科技、全一电子

等多家台湾地区企业。 

雷达散射截面（Radar Cross Section，简称 RCS）是雷达隐身技术中最关键的概念，也是电磁理论

研究的重要课题，使用 HFSS 软件可以很方便的分析计算各种目标物体的 RCS。 

由易迪拓培训推出的《HFSS 雷达散射截面分析培训课程套装》是从零讲起，系统地向您讲授如

何使用 HFSS 软件进行雷达散射截面分析的全过程。该套视频课程由专家讲授，边操作边讲解，直观

易学。 

 

 

HFSS 雷达散射截面分析培训课程套装 

套装包含两门视频培训课程，其中：《两周学会 HFSS》培训课程是作

为 HFSS 的入门培训课程，帮助您在最短的时间内迅速熟悉、掌握 HFSS

的实际操作和工程应用；《HFSS 雷达散射截面(RCS)分析》培训课程是

专门讲授如何使用 HFSS 来分析计算雷达散射截面，包括雷达散射截面、

单站 RCS、双站 RCS 等的定义，实例讲解使用 HFSS 分析单站 RCS、双站

RCS 和宽频 RCS 的相关设置和实际操作等。视频课程，专家讲授，从零

讲起，直观易学... 

课程网址： http://www.edatop.com/peixun/hfss/130.html 

 更多培训课程： 

 HFSS 培训课程 

网址：http://www.edatop.com/peixun/hfss/ 

 CST 培训课程 

网址：http://www.edatop.com/peixun/cst/ 

 天线设计培训课程 

网址：http://www.edatop.com/peixun/antenna/ 

 

 

 
专注于微波、射频、天线设计人才的培养 

官方网址：http://www.edatop.com 易迪拓培训 
淘宝网店：http://shop36920890.taobao.com 


