

Closed-loop transmit diversity systems with hybrid antenna selection

FANG Yong (方 勇), ZHU Yao-lin (朱耀麟)

School of Communication and Information Engineering, Shanghai University, Shanghai 200072, P. R. China

Abstract The paper investigates closed-loop transmit diversity (CLTD) systems with antenna selection technique. The expected received signal-noise-ratio (RxSNR) of the proposed systems is analyzed and compared with CLTD systems. An algorithm is proposed for determining the number of increased transmit antennas in terms of a reduced RF chains without performance degradation. Since a feedback channel is bandwidth-limited, we present a method of quantizing transmit-weight vectors. Simulation results demonstrate advantage of the proposed systems with full and quantized feedback information. Quantized feedback has less effect on the proposed systems than CLTD systems.

Keywords antenna selection, closed-loop transmit diversity (CLTD), quantized feedback.

1 Introduction

The next generation wireless communication systems are required to provide high quality voice services as well as broadband data services. To achieve this goal, a key technique employed in the emerging wireless systems is transmit diversity.

Transmit diversity systems can be classified into open-loop systems and closed-loop systems. The open-loop transmit diversity systems^[1,2], which operate without any feedback information from the mobile, are known to offer diversity gain. The closed-loop transmit diversity (CLTD) systems^[3,4], which operate with feedback information from the mobile, offer not only diversity gain but also beamforming gain. These two transmit diversity systems can provide significant increases in system capacity and performance, but they are both characterized by a relatively higher implementation complexity than antenna selection diversity. Recently, there have been some attempts in combining space-time coding systems with antenna selection technique to reduce the system complexity^[5–7]. However, the combination of space-time coding and antenna selection does not take full advantage of channel state information (CSI) available at the transmitter. Murthy^[8] and Pan^[9] proposed to combine CLTD systems with antenna selection, called ASCLTD systems for brevity. Antenna selection and CLTD can share the feedback channel for CSI which can determine optimum selection of antennas in addition to optimum transmit-weight vector. This approach reduces the implemental complexity of CLTD systems in practice while still having benefits

of multiple antennas.

This paper explores the antenna selection algorithm for closed-loop transmit diversity systems. The purpose is to reduce the number of RF chains with the same performance. The algorithm for determining the number of increased antennas is given. We present the algorithm of quantizing transmit-weight vectors corresponding to optimal channel vectors. Simulation results verify the advantages of ASCLTD systems in both implemental complexity and performance improvement.

2 Problem statements

We consider a wireless link in a quasi-static flat Rayleigh fading environment with M_T antennas and M_F RF chains on the transmitter side and one antenna on the receiver side. Let \mathbf{h} denote the $1 \times M_T$ channel vector. Its entries are the fading coefficients h_i , which are modeled as independent samples of complex Gaussian random variables with a zero mean and variance of 0.5 per dimension. It is assumed that CSI is perfectly available at the receiver and full or partially known at the transmitter. For CLTD systems, transmit-weight vector \mathbf{w} is calculated at the receiver with CSI, and fed back to the transmitter. At the transmitter, the data symbol is multiplied by these weight vectors before transmission. For the antenna selection algorithm, M_F ($M_F < M_T$) transmit antennas are chosen and activated for transmission and the other antennas are silent. The selection criterion has to be determined according to the specific system. The baseband equivalent model of ASCLTD systems is shown in Fig.1. The received signal may be

Received Aug.10, 2006; Revised Oct.25, 2006

Project supported by the National Natural Science Foundation of China (Grant No.60472103), the Shanghai Excellent Academic Leader Project (Grant No.05XP14027), and the Shanghai Leading Academic Discipline Project (Grant No.T0102)
Corresponding author ZHU Yao-lin, PhD Candidate, E-mail: fz_zyl@126.com

expressed as

$$x = \sqrt{E_S} \mathbf{h}_p^H \mathbf{w} s + n, \quad (1)$$

where $E_S = E\{|s|^2\}$ is the average energy of the underlying signal constellation, H in the superscript denotes Hermitian transpose, n is a complex additive white Gaussian noise for receive antenna, $\mathbf{w} = [w_1 \ w_2 \ \dots \ w_{M_F}]^H$ denotes transmit-weight vector. A $1 \times M_F$ channel \mathbf{h}_p , which is the optimal subset $p \in \{1, 2, \dots, P\}$ out of all possible $P = C_{M_T}^{M_F}$ subsets of \mathbf{h} , is used to denote the channel between M_F chosen transmit antennas and one receive antenna. To maintain the same transmit power, we normalize transmit-weight vector such that $\|\mathbf{w}\|^2 \triangleq \sum_{m=1}^{M_F} |w_m|^2 = 1$.

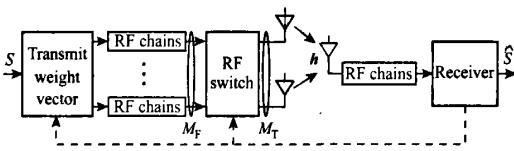


Fig.1 System model

Comparing to M diversity CLTD systems, the (M_F, M_T) ASCLTD systems use M_F ($M_F < M$) reduced RF chains by installing M_T ($M_T > M$) increased transmit antennas. Obviously, only using M_F RF chains will lead to performance loss. Then the value of increased transmit antennas is sufficient to compensate for the loss. The algorithm of determining the value of M_T is our concern. Transmit-weight vectors are calculated by receiver to maximize RxSNR, and are periodically fed back to transmitter through feedback channel. However, the bandwidth of feedback channel limits the precision of these weight vectors. Our task is to quantize these weight vectors and minimize the performance loss.

3 Computation of increased transmit antennas number

For each channel realization of \mathbf{h}_p , the SNR at the receiver output (RxSNR) is

$$\gamma_{\text{ASCLTD}} = (E_S/N_0) |\mathbf{h}_p^H \mathbf{w}|^2 = \gamma_0 \mathbf{w}^H \mathbf{R}_p \mathbf{w}, \quad (2)$$

where $\gamma_0 = E_S/N_0$ denotes transmit SNR (TxSNR) and $\mathbf{R}_p = \mathbf{h}_p \mathbf{h}_p^H$ is an $M_F \times M_F$ Hermitian matrix. An optimum transmit-weight vector can be obtained by finding \mathbf{w} which maximizes RxSNR in (2). With the Rayleigh-Ritz theorem^[10], optimum weight vector \mathbf{w}_{opt} is a principal eigenvector which is associated with maximum eigenvalue of \mathbf{R}_p . Thus, the optimum RxSNR may

be expressed as

$$\gamma_{\text{ASCLTD}}^{\text{opt}} = \gamma_0 \|\mathbf{h}_p\|^2 = \gamma_0 \sum_{i=1}^{M_F} |h_{pi}|^2, \quad (3)$$

where $|h_{pi}|^2, p, i = 1, \dots, M_T$, are i.i.d. chi-squared variables^[11] with probability density function (p.d.f) given by

$$f(z) = f(|h_{pi}|^2 = z) = e^{-z}, \quad (4)$$

and cumulative distribution function (c.d.f.) given by

$$F(z) = P(|h_{pi}|^2 \leq z) = 1 - e^{-z}. \quad (5)$$

The channel parameters are random, thus the system performance measured by SNR is a random variable. In such cases, the expected SNR provides the corresponding measures of average performance of interest in such systems. Irrespective of the TxSNR, the average of optimal RxSNR has been

$$\bar{\gamma}_{\text{ASCLTD}}^{\text{opt}} = \mathbb{E}\{\gamma_{\text{AS}}^{\text{opt}}\} / \gamma_0 = \sum_{i=1}^{M_F} \mathbb{E}\{|h_{pi}|^2\}. \quad (6)$$

Optimal antenna subset is chosen to maximize the instantaneous SNR. In (6), the selection algorithm will choose the transmit antennas among the M_F highest $|h_{pi}|^2$. We produce a new set of descended variables $X_k, k = 1, \dots, M_F$ from $|h_{pi}|^2$. X_k is the k th largest of M_T random variables. Then (6) is rewritten as follows:

$$\bar{\gamma}_{\text{ASCLTD}}^{\text{opt}} = \mathbb{E}\{X_1\} + \dots + \mathbb{E}\{X_{M_F}\}. \quad (7)$$

Then based on [12], the p.d.f. of X_k is

$$p(x) = C_{M_T}^{k-1} [1 - F(x)]^{k-1} C_{M_T-k+1}^1 \cdot f(x) [F(x)]^{M_T-k}. \quad (8)$$

Therefore, the average of k th highest statistic X_k is

$$\mathbb{E}\{X_k\} = M_T C_{M_T-1}^{k-1} \sum_{r=0}^{M_T-k} \left[(-1)^{M_T-k-r} \cdot C_{M_T-k}^r (M_T - r)^{-2} \right], \quad (9)$$

and the average of optimal RxSNR has been

$$\bar{\gamma}_{\text{ASCLTD}}^{\text{opt}} = \sum_{k=1}^{M_F} \left\{ M_T C_{M_T-1}^{k-1} \sum_{r=0}^{M_T-k} \left[(-1)^{M_T-k-r} \cdot C_{M_T-k}^r (M_T - r)^{-2} \right] \right\}. \quad (10)$$

When $M_T = M_F = M$, the systems become pure CLTD systems. The average of its optimum RxSNR can be expressed as follows:

$$\bar{\gamma}_{\text{CLTD}}^{\text{opt}} = \sum_{i=1}^M \mathbb{E}\{|h_{pi}|^2\} = M. \quad (11)$$

Equation (11) gives the performance measure for CLTD systems. This is an interesting result that the average of optimum RxSNR of CLTD systems is equal to its diversity number. Nowadays, we hope to employ a reduced RF chains. We want to compute the number of increased transmit antennas which can compensate performance loss from a reduced RF chains. In other words, we hope

$$M_F < M < M_T, \quad (12)$$

guaranteeing

$$\bar{\gamma}_{\text{ASCLTD}}^{\text{opt}} \geq \bar{\gamma}_{\text{CLTD}}^{\text{opt}}. \quad (13)$$

Combining (10)~(13), the solution is obtained.

4 Quantization of transmit-weight vectors

The feedback channel is bandwidth-limited, therefore transmit-weight vectors must be quantized. There are two selections in ASCLTD systems. One is the selection of optimum transmit antenna subset. The M_F highest $|h_{pi}|^2$ was chosen from M_T transmit antennas, then selection criterion may be expressed as

$$\mathbf{h}_p = \max_{p \in P} \|\mathbf{h}_p\|^2. \quad (14)$$

The other is the selection of optimum quantized weight vector. Grassmannian subspace packing^[13–15] can be used to quantize weight vectors. The Grassmannian space $g(M_F, n)$ is the set of all n dimensional subspaces of M_F dimensional space. The Grassmannian packing is the problem of finding the best packing of Q n -dimensional subspaces in M_F dimensional space. That is to say, we hope to find Q points in $g(M_F, n)$ so that the minimal distance between any two of them is as large as possible. Since we only concern with $g(M_F, 1)$, the subspaces become lines such that the angle between any two of the lines becomes as large as possible^[13]. Thus the problem simplifies down to arranging Q vectors so that the magnitude correlation between any two lines is as small as possible.

Finding good precoder codebooks from Grassmannian subspace packing for arbitrary M_F, n , and Q is actually quite troublesome. The most feasible method for generating these packings is to use codebooks designed from the noncoherent space-time modulation designs in [14,15].

The search algorithm in [14] can be very easily implemented and yields codebooks with large minimum distances. The algorithm works by considering codebooks of the form

$$\Omega = \{\mathbf{w}_{\text{DFT}}, \theta \mathbf{w}_{\text{DFT}}, \dots, \theta^{Q-1} \mathbf{w}_{\text{DFT}}\}, \quad (15)$$

where \mathbf{w}_{DFT} is an $M_F \times 1$ vector with $\frac{1}{\sqrt{M_F}} e^{i(2\pi/M_F)k}$ at the k th entry, the q th codebook is $\mathbf{w}_q = \theta^{q-1} \mathbf{w}_{\text{DFT}}$, and θ is a diagonal matrix given by

$$\theta_{kk} = e^{i(2\pi/Q)u_k}, \quad k = \{1, 2, \dots, M_F\}, \quad (16)$$

where $0 \leq u_k \leq Q - 1$.

The values for u_1, u_2, \dots, u_{M_F} are determined in terms of the entries of the vector $\mathbf{u} = [u_1, u_2, \dots, u_{M_F}]^T$ from the set $Z = \{\mathbf{u} \in Z^{M_F} \mid \forall k, 0 \leq u_k \leq Q - 1\}$ given by

$$\mathbf{u} = \arg \max_{Z} \min_{1 \leq k \leq Q-1} d(\mathbf{w}_{\text{DFT}}, \theta^k \mathbf{w}_{\text{DFT}}). \quad (17)$$

At present, the codebooks of quantized precoder are available. For each optimum channel vector \mathbf{h}_p , the optimum quantized precoder \mathbf{w}_q can be chosen to maximize the RxSNR. Namely,

$$\mathbf{w}_q = \max_{q \in \{1, \dots, Q\}} |\mathbf{h}_p^H \mathbf{w}_q|^2. \quad (18)$$

Comparing with CLTD systems, these quantized weight vectors come from optimum channel vector \mathbf{h}_p , not from random one. Therefore, the quantized weight vector matches employed channel vector more.

5 Simulations

First simulation is to illustrate the advantage of ASCLTD. In Section 3, we know that the average RxSNR of M diversity CLTD systems is $\bar{\gamma}_{\text{CLTD}}^{\text{opt}} = M$. For (M_F, M_T) ASCLTD systems, the average RxSNR $\bar{\gamma}_{\text{ASCLTD}}^{\text{opt}}$ can be represented as (10). For visualization, we show performance of ASCLTD in Fig.2 for $M_F = 1, \dots, 6$. We find that the average RxSNR of a $(5, 8)$ ASCLTD system is equal to 7.1726, greater than that with 7 diversity CLTD systems. In other words, one cheaper transmit antenna save two more expensive RF chains. This is an appealing characteristic.

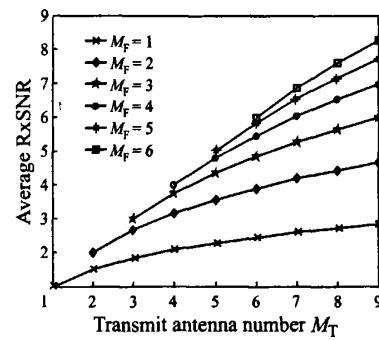


Fig.2 Average RxSNR for ASCLTD systems

Due to the merit of ASCLTD, another problem is whether antenna selection technique can completely replace closed-loop technique. If $M_F = 1$, the system becomes pure transmit antenna selection systems whose performance is shown in Fig.3. The average RxSNR with 4 transmit antennas is slightly larger than 2, and the average RxSNR with 11 transmit antennas is slightly larger than 3. If the average RxSNR is to exceed 4, 31 transmit antennas are required. Obviously, only by transmit antenna selection, abundant transmit antennas are a considerable burden and make antenna switch very difficult. Therefore, it is impractical to entirely depend on the antenna selection technique.

The second simulation is to compare RxSNR between 7 diversity CLTD systems and the (5,8) ASCLTD systems under full and quantized feedback. Channel realizations are i.i.d. from frame to frame. Simulation result with 128 channel realizations is shown in Fig.4, which only displays 40 realizations for clarity. RxSNR of the ASCLTD systems is sometimes higher than that of CLTD systems, and sometimes lower. However, average RxSNR of ASCLTD is slightly higher than that of CLTD, which is consistent with the theoretic result. At present, we investigate the effect from quantized feedback. Here we adopt $N = 4$ bits to encode $Q = 16$

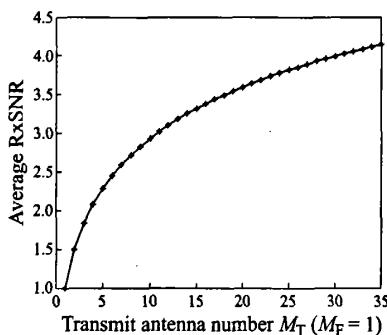


Fig.3 Average RxSNR for pure transmit antenna selection

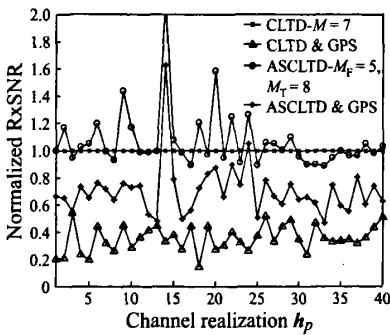


Fig.4 Performance comparison of 4 systems

quantized transmit-weight vector^[16]. Then system performance will be degenerated due to quantized feedback as shown in Fig.4, where GPS is an abbreviation of Grassmannian subspace packing. Fortunately, RxSNR of ASCLTD is considerably higher than that of CLTD under quantized feedback.

6 Conclusions

In this paper, we combine CLTD systems with antenna selection. An algorithm for determining the number of increased transmit antennas is given in terms of reduced RF chains without performance degradation. The solution of quantizing transmit-weight vectors is presented. Finally we simulate performance of ASCLTD and CLTD systems under full and quantized feedback. In some cases, one more transmit antenna can get two RF chains in return in ASCLTD systems. If we employ antenna selection as an alternative to CLTD, excessive transmitting antennas become a considerable obstacle. Compared to CLTD systems, quantized feedback has little effect on ASCLTD. Therefore, ASCLTD systems with quantized feedback can save the RF chains, and lessen the effect from quantized feedback as well.

References

- [1] TAROKH V, SESHADRI N, CALDERBANK A R. Space-time codes for high data rate wireless communication: performance criterion and code construction [J]. *IEEE Transactions on Information Theory*, 1998, **44**(2): 744–765.
- [2] HOCHWALD B, MARZETTA T L, PAPADIAS C B. A transmitter diversity scheme for wideband CDMA systems based on space-time spreading [J]. *IEEE Journal on Select Areas Communications*, 2001, **19**(1): 48–60.
- [3] 3rd Generation Partnership Project. 3G TS 25.214 version 3.0.0. Physical Layer Procedures (FDD) [S/OL]. (1999) [2006-08-10]. <http://www.3gpp.org/ftp/specs/1999-10/for-itu/25224-300.pdf>.
- [4] HWANG K C, LEE K B. Efficient weight vector representation for closed-loop transmit diversity [J]. *IEEE Transactions on Communications*, 2004, **52**(1): 9–16.
- [5] GORE D A, PAULRAJ A. MIMO antenna subset selection with space-time coding [J]. *IEEE Transactions on Signal Processing*, 2002, **50**(1): 2580–2588.
- [6] WONG W H, LARSSON E G. Orthogonal space-time block coding with antenna selection and power allocation [J]. *Electronics Letters*, 2003, **39**(4): 379–381.
- [7] ZHUO C, VUCETIC B, JINHONG Y. Space-time trellis codes with transmit antenna selection [J]. *Electronics Letters*, 2003, **39**(11): 854–855.

- [8] MURTHY C R, RAO B D. On antenna selection with maximal ratio transmission [C]// *The Thirty-Seventh Asilomar Conference on Signals, Systems, and Computers*, Pacific Grove, CA. 2003, 1: 228–232.
- [9] PAN Y H, LETAIEF K B, CAO Z G. Adaptive beam-forming with antenna selection in MIMO systems [C]// *IEEE 60th Vehicular Technology Conference*, Los Angeles, CA. 2004, 3: 1570–1574.
- [10] ZHANG XIAN-DA. *Matrix Analysis and Application* [M]. Beijing: Tsinghua University Press, 2004: 528–532 (in Chinese).
- [11] PROAKIS J G. *Digital Communication* [M]. 4th ed. New York: McGraw Hill, 2001.
- [12] BALAKRISHNAN N, COHEN A C. *Order Statistics and Inference: Estimation Methods* [M]. Boston: Academic Press, 1990: 11–17.
- [13] STROHMER T, HEATH JR R W. Grassmannian frames with applications to coding and communications [J]. *Applied and Computational Harmonic Analysis*, 2003, 14(3): 257–275.
- [14] HOCHWALD B M, MARZETTA T L, RICHARDSON T J, SWELDENS W, URBANKE R. Systematic design of unitary space-time constellations [J]. *IEEE Transactions on Information Theory*, 2000, 46(6): 1962–1973.
- [15] LOVE D J, HEATH JR R W. Limited feedback unitary precoding for orthogonal space-time block codes [J]. *IEEE Transactions on Signal Processing*, 2005, 53(1): 64–73.
- [16] HOTTINEN A, WICHMAN R. Transmit diversity using filtered feedback weights in the FDD/WCDMA system [C]// *International Zurich Seminar on Broadband Communications*, Zurich. 2000: 15–21.

(Editor HONG Ou)

如何学习天线设计

天线设计理论晦涩高深，让许多工程师望而却步，然而实际工程或实际工作中在设计天线时却很少用到这些高深晦涩的理论。实际上，我们只需要懂得最基本的天线和射频基础知识，借助于 HFSS、CST 软件或者测试仪器就可以设计出工作性能良好的各类天线。

易迪拓培训(www.edatop.com)专注于微波射频和天线设计人才的培养，推出了一系列天线设计培训视频课程。我们的视频培训课程，化繁为简，直观易学，可以帮助您快速学习掌握天线设计的真谛，让天线设计不再难…

HFSS 天线设计培训课程套装

套装包含 6 门视频课程和 1 本图书，课程从基础讲起，内容由浅入深，理论介绍和实际操作讲解相结合，全面系统的讲解了 HFSS 天线设计的全过程。是国内最全面、最专业的 HFSS 天线设计课程，可以帮助你快速学习掌握如何使用 HFSS 软件进行天线设计，让天线设计不再难…

课程网址: <http://www.edatop.com/peixun/hfss/122.html>

CST 天线设计视频培训课程套装

套装包含 5 门视频培训课程，由经验丰富的专家授课，旨在帮助您从零开始，全面系统地学习掌握 CST 微波工作室的功能应用和使用 CST 微波工作室进行天线设计实际过程和具体操作。视频课程，边操作边讲解，直观易学；购买套装同时赠送 3 个月在线答疑，帮您解答学习中遇到的问题，让您学习无忧。

详情浏览: <http://www.edatop.com/peixun/cst/127.html>

13.56MHz NFC/RFID 线圈天线设计培训课程套装

套装包含 4 门视频培训课程，培训将 13.56MHz 线圈天线设计原理和仿真设计实践相结合，全面系统地讲解了 13.56MHz 线圈天线的工作原理、设计方法、设计考量以及使用 HFSS 和 CST 仿真分析线圈天线的具体操作，同时还介绍了 13.56MHz 线圈天线匹配电路的设计和调试。通过该套课程的学习，可以帮助您快速学习掌握 13.56MHz 线圈天线及其匹配电路的原理、设计和调试…

详情浏览: <http://www.edatop.com/peixun/antenna/116.html>

关于易迪拓培训:

易迪拓培训(www.edatop.com)由数名来自于研发第一线的资深工程师发起成立,一直致力于专注于微波、射频、天线设计研发人才的培养;后于 2006 年整合合并微波 EDA 网(www.mweda.com),现已发展成为国内最大的微波射频和天线设计人才培养基地,成功推出多套微波射频以及天线设计经典培训课程和 **ADS**、**HFSS** 等专业软件使用培训课程,广受客户好评;并先后与人民邮电出版社、电子工业出版社合作出版了多本专业图书,帮助数万名工程师提升了专业技术能力。客户遍布中兴通讯、研通高频、埃威航电、国人通信等多家国内知名公司,以及台湾工业技术研究院、永业科技、全一电子等多家台湾地区企业。

我们的课程优势:

- ※ 成立于 2004 年, 10 多年丰富的行业经验
- ※ 一直专注于微波射频和天线设计工程师的培养, 更了解该行业对人才的要求
- ※ 视频课程、既能达到了现场培训的效果, 又能免除您舟车劳顿的辛苦, 学习工作两不误
- ※ 经验丰富的一线资深工程师主讲, 结合实际工程案例, 直观、实用、易学

联系我们:

- ※ 易迪拓培训官网: <http://www.edatop.com>
- ※ 微波 EDA 网: <http://www.mweda.com>
- ※ 官方淘宝店: <http://shop36920890.taobao.com>