

Article ID: 1000-2073(2005)04-0029-05

Tolerance analysis of indoor test system for base station antenna^{*}

WU Hong-wei^{1,2}, BRAATZ Werner²

(1. School of Electronics and Information, Suzhou Univ., Suzhou 215021, China;

2. Rosenheim Univ. of Applied Sciences, Rosenheim 83024, Germany)

Abstract: This paper analyzes the potential error sources in the indoor test system for base station antenna and proves theoretically that the absorber chamber has an important influence on the measuring results (Voltage Standing Wave Ratio – VSWR, Isolation). According to the data analyses on the measuring results of different antennas in different absorber chambers, some conclusions are drawn on influences from absorber chambers. Finally, a new analysis method is proposed.

Key words: antenna; tolerance; network analyzer; absorber chamber; VSWR; isolation

CLC number: TN911.23

Document code:A

0 Introduction

Measurement of antenna parameters is an indispensable step in antenna production. Field measuring is impractical for production process and using gymnasium size absorber chamber will occupy a large space. Normally, the producers use a small size of absorber chamber to test the antenna to check whether it meets the specification or not. Due to environment differences between measuring and practical use, the measuring results are to deviate from their true values. How much is the deviation and where the deviation comes from are tasks of this topic.

1 Error sources in the antenna indoor test system

The antenna indoor test system is composed of the network analyzer^[1,2], different kinds of switch and an absorber chamber, which are connected by connecting cables or measuring cables. The antenna under test is placed in the absorber chamber.

Error sources here can be divided into three categories: system errors, random errors and drift errors. Among them, system errors come from the reflectivity and insertion loss of every component in the measuring path; they are predictable and can be removed by calibration except the error from the absorber chamber, which

* Received date: 2005-04-05

Biography: WU Hong-wei(1967-), female, master, lecturer. major in: PC communications and speech signal processing.

will be derived next. Random errors like instrument noise and those resulting from repeatability of switches and connectors are unpredictable. Drift errors are caused by the temperature variation; they can be removed by frequent calibrations.

2 Theoretical analysis of the main sources of system errors

The following diagrams are simplified models for calibration and measurement. Here it is safe for us to equalize the intermediate components (switches, connecting cables, measuring cables) between network analyzer and device under test (calibration standard or antenna) to be a black box with certain transmission coefficient and reflection coefficient^[3] indicated as Te and Re . $Rcal$ denotes the reflection coefficient of calibration standard, Rna denotes that of network analyzer. $Tdut$ and $Rdut$ denote the transmission coefficient and reflection coefficient of the antenna respectively. Rak represents the reflection coefficient of the absorber chamber.

For one port calibration, the received reflection is composed of Ref_1 and Ref_2 . See Fig. 1, we can get

$$Ref_1 = Re$$

$$Ref_2 = Te^2 \cdot Rcal$$

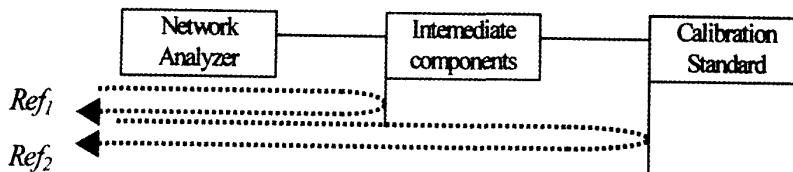


Fig.1 One port calibration

Then the whole reflection for one port calibration Ref_{-cal} is represented as

$$Ref_{-cal} = Ref_1 + Ref_2 = Re + Te^2 \cdot Rcal$$

When the open calibration standard is applied, it means $Rcal = +1$. When it is the case of the short one, it means $Rcal = -1$. Thus the following two equations hold and Te and Re can be calculated from them.

$$Ref_{-cal_open} = Re + Te^2 \quad (2.1)$$

$$Ref_{-cal_short} = Re - Te^2 \quad (2.2)$$

For reflectivity measurement, the received reflection is composed of Ref_1 , Ref_2 and Ref_3 . See Fig. 2,

$$Ref_1 = Re$$

$$Ref_2 = Te^2 \cdot Rdut$$

$$Ref_3 = Te^2 \cdot Tdut^2 \cdot Rak$$

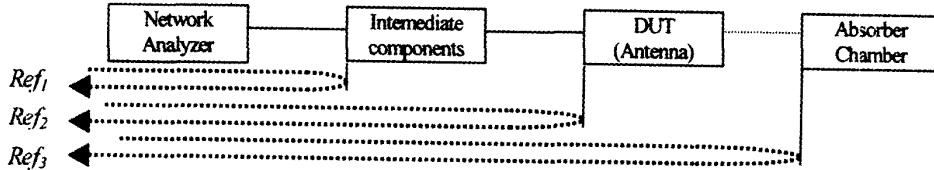


Fig.2 Reflectivity measurement(S11 or S22)

Then the whole reflection Ref is as

$$Ref = Ref_1 + Ref_2 + Ref_3 = Re + Te^2(Rdut + Tdut^2 \cdot Rak)$$

After calibration (T_e , R_e are known) the reflection of measurement Ref_meas is as

$$Ref_meas = Rdut + Tdut^2 \cdot Rak \quad (2.3)$$

For isolation measurement and calibration, two ports are needed. Here no more than one time reflection is considered. See Fig. 3 and Fig. 4.

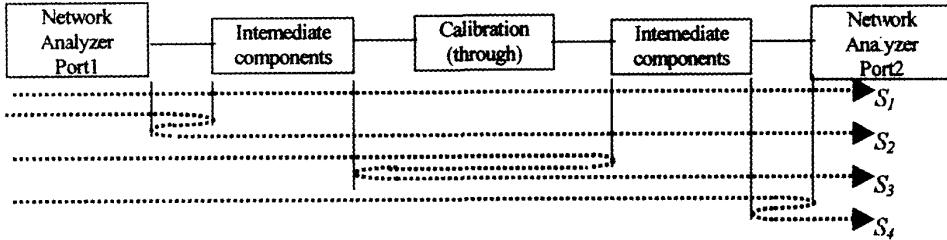


Fig. 3 Two-port calibration

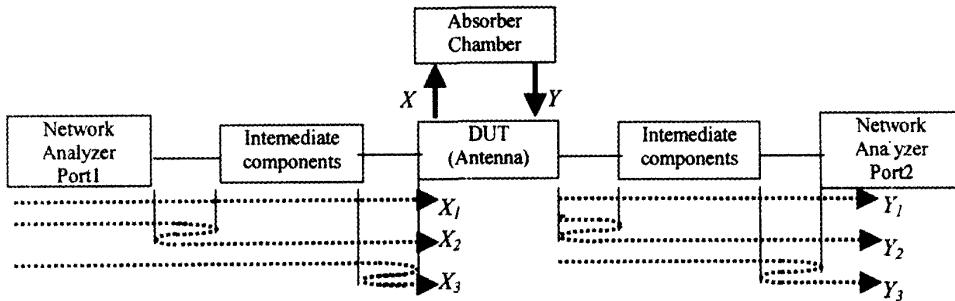


Fig. 4 Isolation measurement (S21 or S12)

For through calibration (assuming no reflection and no return loss for the through standard device)

$$\begin{aligned} S21_cal &= S_1 + S_2 + S_3 + S_4 \\ &= T_e^2 + R_e \cdot Rna \cdot T_e^2 + T_e^2 \cdot R_e^2 + T_e^2 \cdot R_e \cdot Rna \\ &= T_e^2 \cdot (1 + 2 \cdot R_e \cdot Rna + R_e^2) \end{aligned}$$

Since we have known T_e and R_e from one port calibration, Rna becomes definite now.

For isolation (S21) measurement, here X means the signal sent out by one antenna (e.g. $+45^\circ$) and Y means the signal received by another one (e.g. -45°).

$$X = X_1 + X_2 + X_3 = Tdut \cdot T_e (1 + R_e \cdot Rna + S11 \cdot R_e)$$

$$Y = X \cdot (Rak + S21)$$

The signal received at port 2 is denoted as $S21_rec$, composed of Y_1 , Y_2 and Y_3 .

$$\begin{aligned} S21_rec &= Y_1 + Y_2 + Y_3 = Y \cdot T_e \cdot (1 + R_e \cdot S22 + R_e \cdot Rna) \\ &= (S21 + Rak) \cdot Tdut \cdot T_e^2 \cdot (1 + R_e \cdot Rna + S11 \cdot R_e) \cdot (1 + R_e \cdot S22 + R_e \cdot Rna) \end{aligned}$$

Here $S11$ and $S22$ mean reflectivity coefficients from the two ports of antenna respectively, which can be approximated as Ref_meas from the VSWR measurement above. After calibration, we get the measurement value of $S21_meas$,

$$S21_meas = (S21 + Rak) \cdot Tdut \quad (2.4)$$

From (2.1) and (2.2), we can know that system errors (T_e and R_e) can be corrected by calibration. Assuming that $Tdut$ equals 1, the measurement values are the sum of the true values and the reflection from the

absorber chamber, as in (2.3) and (2.4). Through the above derivatives, it is clear that the absorber chamber is a main influence on the measuring results after calibration. However the reflection from the absorber chamber is not constant; it depends not only on the size of the absorber chamber but also on the frequency and power of incident waves. Therefore the radiation pattern of the antenna itself will also be an influential factor on the measuring results.

3 Test results

The absorber is made from specially treated low-density polyurethane foam, shaped as conventional pyramids. The absorber chamber is one in which absorber pieces are installed. Measuring the S parameters of an antenna outdoor with no reflections around and those values in an absorber chamber respectively, we define the reflections from the absorber chamber as the corresponding differences between measurement results in two cases, which is derived in section 2. Some random errors such as those from temperature, moisture, operators, and equipments, etc. are excluded.

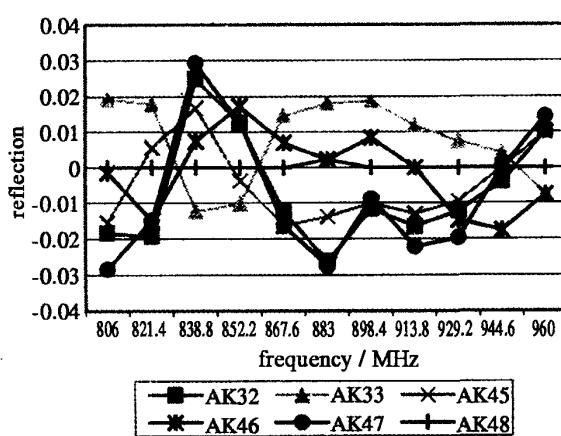


Fig. 5 Reflections from different absorber chambers

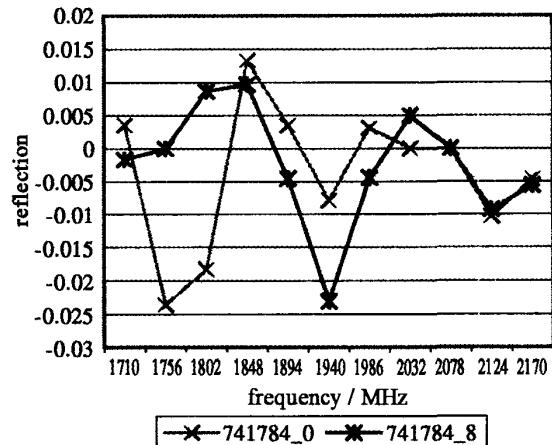


Fig. 6 Reflections from absorber chamber AK32 in measuring S11 of antenna 741784 with 0° and 8° down-tilt respectively

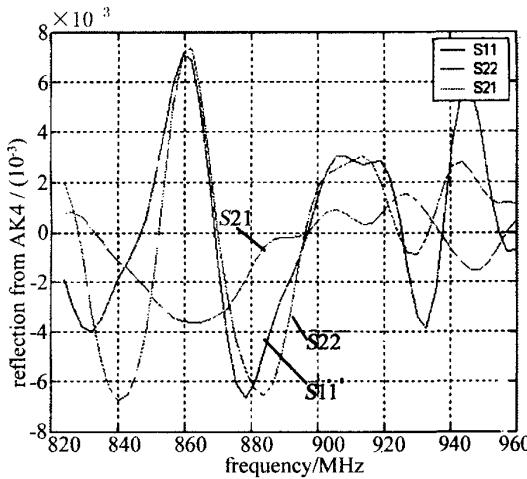


Fig. 7 Reflection influence on S parameters (GSM900)

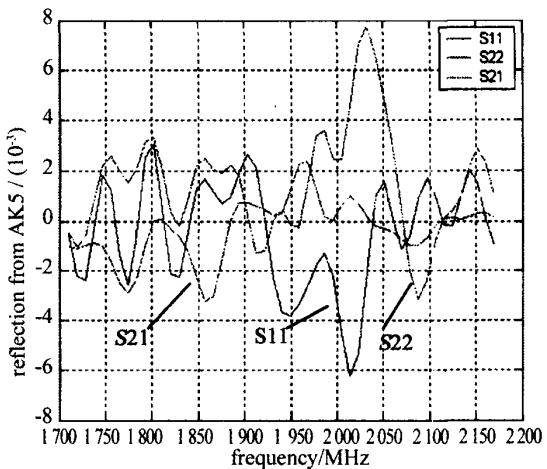


Fig. 8 Reflection influence on S parameters (GSM 1800)

Reflections from several absorber chambers in measuring S11 of antenna 739632^[4] are shown in Fig. 5, in which AK32, ⋯, AK48 represent different absorber chambers. Reflections of the same antenna with different down-tilt in the same absorber chamber are shown in Fig. 6.

For different S parameters, by performing FFT on reflections from the absorber chamber, the waveforms composed of the first ten important harmonics are shown in Fig. 7 and Fig. 8.

4 Conclusions and further work

At least, the following three conclusions can be drawn from the test results. (1) For the same antenna, measuring results are different in different absorber chambers, because there are always nuance among different absorber chambers although they are made based on the same specification. (2) One absorber chamber has different reflection influences on antennas with different radiation patterns; even it is the case of same antenna with different down-tilt. That is, reflection from the absorber chamber is relevant to the incident waves. (3) One absorber chamber has different influences on different S parameters of the same antenna because of the different reflection paths. However, all measuring results meet the specification of the corresponding antenna.

The above analysis is based on the scalar data or the amplitude alone; the phase differences are neglected, but phase differences are obvious. Thus in order to get accurate and quantitative results, it is a proposal to carry out analyses using vector differences.

References:

- [1] Agilent Technologies. Inc. RF Network Analysis Basics [Z]. USA: Agilent Technologies, 2003.
- [2] Agilent Technologies. Inc. Network Analyzer Basics [Z]. USA: Agilent Technologies, 2002.
- [3] Agilent Technologies. Inc. RF Source Basics [Z]. USA: Agilent Technologies. 2000.
- [4] Kathrein Company. Kathrein-Katalog 2002[R]. Rosenheim, Germany: Kathrein Company, 2002.

基站天线室内测量系统的误差分析

吴红卫^{1,2}, BRAATZ Werner²

(1. 苏州大学电子信息学院, 江苏 苏州 215021;

2. 罗森海姆应用技术大学, 罗森海姆 83024, 德国)

摘要:分析了基站天线室内测量系统的误差源,理论证明微波暗室是影响测量结果(电压驻波比,隔离度)的重要因素.根据对测试结果的分析,得出了关于微波暗室对天线性能参数影响的几点结论.最后指出了所用方法的不足之处,提出了新的分析方法.

关键词:基站天线;误差;网络分析仪;微波暗室;电压驻波比;隔离度

(Edited by: ZHOU Jian-lan)

如何学习天线设计

天线设计理论晦涩高深，让许多工程师望而却步，然而实际工程或实际工作中在设计天线时却很少用到这些高深晦涩的理论。实际上，我们只需要懂得最基本的天线和射频基础知识，借助于 HFSS、CST 软件或者测试仪器就可以设计出工作性能良好的各类天线。

易迪拓培训(www.edatop.com)专注于微波射频和天线设计人才的培养，推出了一系列天线设计培训视频课程。我们的视频培训课程，化繁为简，直观易学，可以帮助您快速学习掌握天线设计的真谛，让天线设计不再难…

HFSS 天线设计培训课程套装

套装包含 6 门视频课程和 1 本图书，课程从基础讲起，内容由浅入深，理论介绍和实际操作讲解相结合，全面系统的讲解了 HFSS 天线设计的全过程。是国内最全面、最专业的 HFSS 天线设计课程，可以帮助你快速学习掌握如何使用 HFSS 软件进行天线设计，让天线设计不再难…

课程网址: <http://www.edatop.com/peixun/hfss/122.html>

CST 天线设计视频培训课程套装

套装包含 5 门视频培训课程，由经验丰富的专家授课，旨在帮助您从零开始，全面系统地学习掌握 CST 微波工作室的功能应用和使用 CST 微波工作室进行天线设计实际过程和具体操作。视频课程，边操作边讲解，直观易学；购买套装同时赠送 3 个月在线答疑，帮您解答学习中遇到的问题，让您学习无忧。

详情浏览: <http://www.edatop.com/peixun/cst/127.html>

13.56MHz NFC/RFID 线圈天线设计培训课程套装

套装包含 4 门视频培训课程，培训将 13.56MHz 线圈天线设计原理和仿真设计实践相结合，全面系统地讲解了 13.56MHz 线圈天线的工作原理、设计方法、设计考量以及使用 HFSS 和 CST 仿真分析线圈天线的具体操作，同时还介绍了 13.56MHz 线圈天线匹配电路的设计和调试。通过该套课程的学习，可以帮助您快速学习掌握 13.56MHz 线圈天线及其匹配电路的原理、设计和调试…

详情浏览: <http://www.edatop.com/peixun/antenna/116.html>

关于易迪拓培训:

易迪拓培训(www.edatop.com)由数名来自于研发第一线的资深工程师发起成立,一直致力于专注于微波、射频、天线设计研发人才的培养;后于 2006 年整合合并微波 EDA 网(www.mweda.com),现已发展成为国内最大的微波射频和天线设计人才培养基地,成功推出多套微波射频以及天线设计经典培训课程和 **ADS**、**HFSS** 等专业软件使用培训课程,广受客户好评;并先后与人民邮电出版社、电子工业出版社合作出版了多本专业图书,帮助数万名工程师提升了专业技术能力。客户遍布中兴通讯、研通高频、埃威航电、国人通信等多家国内知名公司,以及台湾工业技术研究院、永业科技、全一电子等多家台湾地区企业。

我们的课程优势:

- ※ 成立于 2004 年, 10 多年丰富的行业经验
- ※ 一直专注于微波射频和天线设计工程师的培养, 更了解该行业对人才的要求
- ※ 视频课程、既能达到了现场培训的效果, 又能免除您舟车劳顿的辛苦, 学习工作两不误
- ※ 经验丰富的一线资深工程师主讲, 结合实际工程案例, 直观、实用、易学

联系我们:

- ※ 易迪拓培训官网: <http://www.edatop.com>
- ※ 微波 EDA 网: <http://www.mweda.com>
- ※ 官方淘宝店: <http://shop36920890.taobao.com>