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　　摘　要：自适应阵列天线作为全球卫星导航系统（ｇｌｏｂａｌ ｎａｖｉｇａｔｉｏｎ ｓａｔｅｌｌｉｔｅ ｓｙｓｔｅｍ，ＧＮＳＳ）抗干扰应用中的

重要工具，已经得到了广泛应用。然而，自适应阵列天线在抑制干扰的过程中，破坏了 ＧＮＳＳ 信号的完整性，给

ＧＮＳＳ 接收机测量引入了新的误差。首先从理论上分析测量误差的来源，然后通过仿真分析自适应阵列天线对接

收机码相关函数的影响，最后提出一种码／载波相位偏差估算方法，并进行了引入测量误差大小的估算。实验结

果表明，自适应阵列天线引入的测量误差具有不确定性，主要是由码相位偏差引起的，引入的伪距误差甚至达到

几十米。在高精度应用中，这些误差必须被消除或补偿。
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０　引　言

　　全球卫星导航系统（ｇｌｏｂａｌ ｎａｖｉｇａｔｉｏｎ ｓａｔｅｌｌｉｔｅ ｓｙｓｔｅｍ，

ＧＮＳＳ）是一种以卫星为基础的无线电导航系统，它通过导

航卫星向全球范围的用户播发全天候、高精度、连续实时的

导航、定位和授时信息，为海陆空等领域用户提供服务。

由于 ＧＮＳＳ 卫星运行于空间轨道，到达地面的信号功

率极其微弱，因而容易受到各种有意和无意干扰的影响。

这些干扰信号降低了 ＧＮＳＳ 接收机的定位和导航精度，严

重时甚至会造成接收机无法正常工作。目前，针对 ＧＮＳＳ

接收机的抗干扰技术研究已经得到了广泛的关注。

自适应阵列天线作为 ＧＮＳＳ 接收机抑制干扰的主要工

具，它能够根据空间环境变化，实时改变各阵元的增益和相

位，使阵列方向图能够在干扰方向上产生零陷，或在期望信

号方向上形成主瓣，从而达到消除干扰的目的［１］。

然而，自适应阵列天线在空时域抑制干扰的同时，也破

坏了 ＧＮＳＳ 信号的完整性，给 ＧＮＳＳ 接收机引入了测量误

差［２］。这主要表现在两个方面：①ＧＮＳＳ 接收机的相位测

量是以接收机天线的相位中心为基准的，而阵列天线中由

于各阵元之间的电磁耦合、空间位置偏差，以及生产工艺造
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成的性能差异等，会使天线的相位中心发生变化，从而给接

收机测量引入误差，这种误差是由于阵列天线的物理性质

等原因引起的，可以通过传统的天线校准技术来补偿；②阵

列天线的自适应波束形成算法随着空间入射信号的变化而

实时改变阵列天线的方向图，这相当于改变了空时滤波器

的传输函数，也即天线中心相位和群延迟为入射信号的函

数，随着空间环境的变化而变化，因此，阵列天线采用的自

适应波束形成算法不可避免地给接收机相位测量引入了误

差，它们主要表现在码相位测量误差和载波相位测量误差

上［３ ４］，这种误差通常随空间环境变化而变化，是不确定性

的误差，无法采用固定的天线相位校准技术来消除。

目前针对 ＧＮＳＳ 自适应阵列天线的研究，主要集中在

阵列天线的抗干扰性能上，很少有学者去考虑阵列天线对

ＧＮＳＳ 接收机测量引入的不确定性误差。文献［５］研究

ＧＮＳＳ 阵列天线相位中心的变化及其对伪距测量的影响；

文献［６］提出利用维纳滤波对失真的相关函数进行补偿来

消除阵列天线引入的误差。

本文首先从理论上分析和推导自适应阵列天线给接收

机测量引入的误差；然后研究阵列天线和不同自适应算法

对接收机码相关函数的影响；最后通过仿真实验估算自适

应阵列引入测量误差的大小。为进行误差补偿和提高导航

精度提供理论依据。

１　自适应阵列天线模型

自适应阵列天线通常由多个天线阵元和一个自适应处

理器组成。各阵元之间按照一定要求进行馈电和空间排

列，根据阵元放置方式的不同，阵列天线可分为线阵和面

阵。常见的线阵是各阵元中心依次等距排列在一条直线上

的均匀线阵。不失一般性，本文中的建模和仿真均是建立

在均匀线阵模型的基础上。

假设阵列在空间中沿　 轴放置，阵列间距等于 ＧＮＳＳ

信号波长的一半。阵列中第 １ 个阵元为参考阵元，第　 个

阵元的空间坐标为（　 　，　 　，　 　），阵列的几何关系如图 １ 所

示。其中，θ和分别为入射信号的俯仰角和方位角。

图 １　阵元位置与入射信号关系图

通常，阵列天线的空间自由度由阵元个数决定，也就是

说，如果自适应阵列天线的阵元个数为　，则该阵列最多能

消除　－１ 个干扰。为了提高阵列天线的抗干扰个数，可采

用在每个阵元后接一个时域滤波器的方法，这称为空时自适

应处理（ｓｐａｃｅ-ｔｉｍｅ ａｄａｐｔｉｖｅ ｐｒｏｃｅｓｓｉｎｇ，ＳＴＡＰ）。ＳＴＡＰ 阵列

模型如图 ２ 所示。

图 ２　ＳＴＡＰ 阵列模型

图 ２ 中，　　（　 ，θ，）表示第　 个阵元的传输函数，它与

入射信号的频率、方向有关；θ和分别表示入射信号的方

位角和俯仰角；　　（　）为射频前端的传输函数；　　（　 ）为第

　 个阵元后的时域滤波器的传输函数，它只与入射信号的

频率有关。其中，　　（　）定义为

　　（　）　∑
　

　 　１

　　　 ｅ
　ｊ２π　　 ０

（　　１） （１）

式中，　 ０ 表示抽样周期。用 　（　 ，θ　 ，　 ）表示自适应阵列的

传输函数，则有

　（　 ，θ　 ，　 ）　∑
　

　　１

　　（　 ，θ　 ，　 ）　　（　）　　（　） （２）

　　假设天线阵元和射频前端是理想的，则卫星信号通过

每个阵元和射频前端后得到的中频形式可以表示为

　 （　 ）　　 ０　 （　 　τ０）ｅ
ｊ ０ （３）

式中，　 （　 ）是一个二进制的伪随机码序列；　 ０ 是序列的幅

度；τ０ 是码相位延迟； ０
是载波相位。

信号　 （　 ）经过自适应阵列后输出的频域形式可表示为

　　 （　）　　 ０　（　）　（　 ，θ　 ，　 ）ｅ
ｊ ０－ｊ２π　τ０ （４）

式中，　（　）为信号　 （　 ）的傅里叶变换。

２　自适应阵列引入的测量误差

ＧＮＳＳ接收机中，τ０ 和 ０
是接收机测量中的两个重要

参数，自适应阵列天线的引入相当于对入射信号进行空域

滤波，因而不可避免地给入射信号带来畸变。下面通过推

导τ０ 和 ０
的变化来分析阵列天线引入的接收机测量

误差。

阵列天线在自适应处理后，阵列输出信号　　 （　 ）与本地

参考扩频码进行相关计算，接收机通过寻找相关值的最大

位置得到接收信号的码时延。在时刻τ，阵列输出与本地扩

频码的互相关函数可表示为

　（τ）　　　 ０∫
∞

　∞
　　 （　）　（　 ，θ　 ，　 ）ｅ

ｊ ０ ｅ
ｊ２π　（τ　τ０

）
ｄ　 （５）

式中，　 表示一个常值；　　 （　）是信号　 （　 ）的功率谱密度。
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求解式（５）中使　（τ）最大化的τ，即可得到接收机的码

相位时延值

τ　 　 ａｒｇ ｍａｘ
τ
　　（τ）　 （６）

　　载波相位测量值 　
为互相关函数　（τ）在时刻τ　 时的

角频率，即
　
＝∠　（τ　）。

在式（５）中，如果　（　 ，θ　 ，　 ）＝１，则　（τ）在τ＝τ０ 时达

到最大，此时互相关函数的载波相位等于
０
，这样得到的码

时延和载波相位测量值是无偏差的。然而对于自适应阵列

天线，　（　 ，θ　 ，　 ）随入射信号的方向变化而变化，互相关函

数为变量θ　 和　 的函数，此时码时延的偏差

τ　（θ　 ，　 ）　 ａｒｇ ｍａｘ
τ
　（τ） （７）

载波相位偏差

　（θ　 ，　 ）　 ∠　（τ　，θ　 ，　 ） （８）

　　由式（７）和式（８）得到的码相位和载波相位偏差可以进

一步估算出阵列天线给接收机测量引入的误差。

３　自适应阵列对接收机码相关函数的影响

３．１　仿真步骤

通过仿真实验分别研究了自适应阵列中各阵元输出与

接收机码相关函数的关系，以及不同的自适应算法对接收

机码相关函数的影响，仿真过程如下。

步骤 １　模拟产生 ＧＮＳＳ 卫星信号，这些信号来自空

间不同方向，信噪比可调。本文不考虑由天线阵列的物理

原因及射频前端器件等引起的有用信号变化，因而模拟产

生的 ＧＮＳＳ 信号为没有畸变的中频 ＧＮＳＳ 信号。

步骤 ２　根据自适应天线阵列的导向矢量，得到各阵

元输出，分别观察各阵元输出信号与本地参考信号的互相

关性能。

步骤 ３　卫星信号中加入干扰，采用不同的自适应波

束形成算法得到阵列输出，验证各算法对接收机码互相关

函数的关系。

步骤 ４　验证自适应天线阵列对接收机载波跟踪环的

影响。

３．２　不同阵元对码相关函数的影响

根据文献［７］，包含　 个阵元的均匀线性阵列中，方位

角为，俯仰角为θ的信号的导向矢量为

a 　

１

ｅｘｐ｛ｊ
２π

λ
（ｓｉｎθ ｓｉｎ）　｝



ｅｘｐ｛ｊ
２π

λ
（ｓｉｎθ ｓｉｎ）（　　 １）　

熿

燀

燄

燅
｝

（９）

式中，λ表示入射信号波长；　 表示阵元间距。当有 　 个信

号同时到达阵列天线时，这　 个信号的导向矢量A 可表示

为　×　 的矩阵形式

A 　

１ １ … １

ｅｊ
２π
λ
（ｓｉｎθ１ ｓｉｎ１）　 ｅｊ

２π
λ
（ｓｉｎθ２ ｓｉｎ２）　 … ｅｊ

２π
λ
（ｓｉｎθ　 ｓｉｎ　）　

   

ｅｊ
２π
λ
（ｓｉｎθ１ ｓｉｎ１）（　　１）　 ｅｊ

２π
λ
（ｓｉｎθ２ ｓｉｎ２）（　　１）　 … ｅｊ

２π
λ
（ｓｉｎθ　 ｓｉｎ　）（　　１）

熿

燀

燄

燅
　

（１０）

多个卫星信号通过阵列天线，与导向矢量A 相乘后，各个阵

元的输出为

　（　 ）　A·　 （　 ）　　（　 ） （１１）

仿真实验的模拟场景中，假设入射信号包括 ３ 个 ＧＮＳＳ 卫

星信号，信噪比为 －２０ ｄＢ，各个卫星信号的扩频码速率为

１．０２３ MＨｚ，信号入射方向如表 １ 所示。

表 １　入射信号方向

卫星号 方位角／（°） 俯仰角／（°）

１ ２７０ ６０

２ ３０ ３０

３ ９０ ２０

首先观察各阵元输出信号与本地码的互相关函数。采用

７ 阵元天线，本地扩频码选用与卫星 ２（入射方向为（３０°，３０°））

一致的扩频码，即观察卫星 ２ 的信号经过阵列后与本地码的相

关关系。相关过程中本地码每次滑动 １／４ 个码片，得到在不同

码偏移情况下，各阵元输出信号与本地码的互相关值，如图 ３

所示（仅绘出前 ３ 个阵元），其中ＡＥ代表天线阵元。

图 ３　不同阵元，同一个 ＧＮＳＳ 信号的互相关函数

从图 ３ 可以看出，各个阵元对接收信号的影响均不相

同。当 ＧＮＳＳ 信号在没有干扰和畸变的情况下，其互相关

函数是左右对称的。接收机在进行码跟踪时，通常使用早

中 晚延迟锁定环，延迟锁定环实时调整早 晚相关器输出，

使其输出相等，此时“中”相关器的输出可以看作相关函数

的峰值，从而可以得到接收信号与本地码的相对时延。当

互相关函数产生如图 ３ 所示的变化时，由于早 晚相关器的

输出不再对称，接收机估计得到的码时延将会产生错误。

图 ４ 表示在同一个阵元上（阵元 ２），不同方向上的入射

信号与本地码进行相关得到的互相关函数。其中卫星 １～

卫星 ３ 分别对应于表 １ 所示的卫星信号。从图 ４ 可以看
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出，对于不同入射方向的信号，互相关函数的变化互不相

同，也即同一个天线阵元对不同入射信号的变化也不相同，

从而导致天线阵列对不同信号造成的码测量误差是随着入

射方向变化而变化的。

图 ４　同一阵元上，不同方向 ＧＮＳＳ 信号的互相关函数

３．３　自适应算法对码相关函数的影响

自适应算法按照一定的约束准则，根据阵列所处的空间

信号环境，实时调整阵列的自适应权值，权值的变化改变了理

想ＧＮＳＳ信号的幅度相位等信息，从而给接收机的码相位测量

引入了测量误差。阵列天线采用不同的自适应算法，得到的权

值一般也不同，因而对理想 ＧＮＳＳ信号的影响也不同。

自适应阵列天线在抗干扰过程中衍生了多种自适应滤

波算法，各种算法采用的约束准则［８］主要有：最小均方误差

准则（ｍｉｎｉｍｕｍ ｍｅａｎ-ｓｑｕａｒｅｄ ｅｒｒｏｒ，MMＳＥ）、线性约束最小

方差准则（ｌｉｎｅａｒｌｙ ｃｏｎｓｔｒａｉｎｔ ｍｉｎｉｍｕｍ ｖａｒｉａｎｃｅ，ＬＣMＶ）、最

大输出信噪比准则（ｍａｘｉｍｕｍ ｓｉｇｎａｌ ｎｏｉｓｅ ｒａｔｉｏ，MＳＮＲ）、

最大输出载噪比准则（ｍａｘｉｍｕｍ Ｃ／Ｎ０，MａｘＣ／Ｎ０）等。文

献［７］证明了在 ＧＮＳＳ 接收机中，MａｘＣ／Ｎ０ 准则比 MＳＮＲ

准则具有更优的性能，因而，本节选择基于 MMＳＥ、ＬＣMＶ

和 MａｘＣ／Ｎ０ 准则的自适应算法来分析不同算法对接收信

号的影响。

仿真中假设阵列接收到的信号为一个 ＧＮＳＳ 卫星信号

和一个干扰信号，ＧＮＳＳ 信号的信噪比为－２０ ｄＢ，入射方

向为俯仰角等于 ３０°，方位角等于 ３０°。干扰信号的干信比

为 ２０ ｄＢ，入射方向为俯仰角等于 ６０°，方位角等于 １２０°。

基于 MMＳＥ、ＬＣMＶ 和 MａｘＣ／Ｎ０ 准则的自适应权值

分别可以根据文献［９］、文献［１０］和文献［７］的方法得到。

使用由这 ３ 种准则得到的不同权值对接收到的阵列信号进

行加权处理，然后进行相关计算。

ＧＮＳＳ 接收机的相关过程通常采用早 中 晚 ３ 组相关

器，本节仿真中早 中 晚相关器的相关间隔为 １／４ 个码片。

图 ５ 表示不同码偏差下的互相关值。

从图 ５ 可以看出，不同的权矢量对互相关函数造成的

影响也不同。当接收机中“早”、“晚”相关器的输出发生偏

离时，ＧＮＳＳ 信号锁定的位置也将偏离互相关函数的峰值，

偏离程度与采用的自适应算法有关，是一个不确定的误差。

图 ５　采用不同自适应算法准则得到的互相关函数值

４　测量误差的估算

从上面的分析知道，自适应阵列天线在抑制干扰的过

程中，由于自适应权值随着入射信号的变化而实时变化着，

因而给接收机引入了不确定的测量误差。而采用 ＳＴＡＰ 的

自适应阵列天线，时域的有限冲激响应滤波器也将进一步

损坏理想 ＧＮＳＳ 信号
［１ １］。本节采用文献［７］中的自适应滤

波算法，估算自适应算法引入的码相位测量和载波相位测

量的误差大小，为进一步的误差补偿提供理论和实验依据。

４．１　实验方法

根据文献［７］，自适应权值w０ 可由下式得到：

（PＧP
Ｈ
Ｇ）

－１PＧRＧP
Ｈ
Ｇw０ 　λw０ （１２）

式中，PＧ 表示信号子空间；RＧ 表示 ＧＮＳＳ 信号的自相关矩

阵；w０ 是对应于矩阵（PＧP
Ｈ
Ｇ）

－１PＧRＧP
Ｈ
Ｇ 最大特征值的特征

向量。

在实验中，首先模拟生成阵列接收信号，然后利用

式（１２）得到自适应权值，估计接收机跟踪环输出信号的

Ｃ／Ｎ０和测量误差，具体步骤如下。

步骤 １　模拟生成由 ＧＮＳＳ 卫星信号和干扰信号组成

的混合信号，这些信号的入射方向和信号强度可调可控。

步骤 ２　混合信号通过自适应天线阵列，阵列输出被

送到权值控制模块处理。

步骤 ３　保存权值，并对阵列信号进行加权合并，然后

输出到接收机进行解扩和跟踪，然后再根据接收机跟踪环

路的输出去估算码／载波的相位偏差，如图 ６ 表示。

图 ６　码／载波相位偏差估计方法
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４．２　实验结果

假设信号源包括 ４ 个 ＧＮＳＳ 卫星信号和 ２ 个干扰信

号，ＧＮＳＳ 信号的信噪比为－２０ ｄＢ，干信比为 ３０ ｄＢ，信号

方位图如图 ７ 所示。

图 ７　仿真场景信号方位图

首先利用式（１２）得到自适应阵列的最优权值，使用最

优权值对接收信号加权合并后得到干扰抑制后的信号，然

后接收机对此信号进行捕获和码／载波跟踪，根据跟踪环路

可以得到码相位测量误差和载波测量误差的估计值。

对图 ７ 中的 ＧＮＳＳ 信号分别进行相关运算，得到不同

码偏移情况下的互相关函数值，如图 ８ 所示。图中只针对

前 ３ 个卫星信号，绘出了码偏移在正负一个码片内的情况，

码片每次偏移量为 １／４ 码片。然后根据鉴相器偏差来估计

接收信号的码相位偏差。

图 ８　码相位偏差估计

ＧＮＳＳ 接收机通常采用延迟锁相环进行码相位跟踪。

码环滤波器通过调整码偏移量使超前和滞后支路的互相关

值趋于相等，对应于图 ８ 中的卫星 １，当码环滤波器调整超

前、滞后支路使其相关值相等时，调整的码偏移量等于τ１，

相当于码相关峰值偏移了τ１。同样也可以得到卫星 ２ 和卫

星 ３ 的码相关峰值偏移量τ２ 和τ３。

对于不同宽度的码片，不同的码相位偏差对应于不同

的伪距偏差。将码片偏差转化为对应的传播时间，再乘以

光速即可得到该卫星的伪距偏差。取码速率为 １．０２３ MＨｚ

（ＧＰＳ Ｃ／Ａ 码速率），可以得到图 ８ 中卫星的伪距偏差。提

高码片速率可以减少码片偏差引入的伪距误差，再取码速

率为 １０．２３ MＨｚ（ＧＰＳ Ｐ 码速率），则此时码相位测量的误

差将降低 １０ 倍，如表 ２ 所示。

表 ２　码相位和载波相位偏差估计

卫星

码相位偏差

码片延

迟个数

距离／ｍ

（Ｃ／Ａ 码）

距离／ｍ

（Ｐ 码）

载波相位偏差

相位

差／（°）
距离／ｍ

１ ０．０６ １７．６ １．７６ １１９．８ ０．０６

２ ０．１８ ５２．７ ５．２７ １６．９ ０．００９

３ ０．０３ ８．８ ０．８８ ７１．７ ０．０３８

得到码相位偏差后，对应的载波相位偏差即可由式（８）

得到。取载波频率为 １ ５７５．４２ MＨｚ，则可以得到载波相位

偏差所对应的伪距偏差，也列于表 ２。

从表 ２ 可以看出，自适应阵列引入的载波相位偏差对

伪距测量的影响比较小，误差在厘米级的范围内，而码相位

偏差对伪距测量的影响比较大，可能达到几十米。即使是

高速扩频码，如 ＧＰＳ Ｐ 码，由自适应阵列引入的伪距偏差

也在数米以上，因而，高精度 ＧＮＳＳ 接收机在进行干扰抑制

的同时，还必须要考虑自适应阵列引入的测量误差。

５　结　论

自适应阵列天线在抑制干扰的过程中，由自适应算法得

到的最优权值随入射信号的变化而不断变化，这相当于在不

断改变空时滤波器的传输函数，因而对接收信号的幅度、相

位等造成失真，进而给 ＧＮＳＳ接收机测量引入了不确定性的

误差。本文首先从理论上分析了 ＧＮＳＳ 接收机的测量误差

来源，然后通过实验仿真研究了自适应阵列算法对接收机自

相关函数的影响，最后估算自适应算法引入的测量误差大

小。实验结果表明，采用码相位测量进行伪距计算的接收机

中，自适应阵列天线引入的测量误差将达到几十米，在对导

航精度要求较高的场合，必须考虑对测量误差消除或补偿。
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ｃｅｓｓｉｎｇ ｏｎ ＧＰＳ ｓｉｇｎａｌｓ ａｎｄ ｉｔｓ ｃｏｍｐｅｎｓａｔｉｏｎ ｍｅｔｈｏｄ［Ｊ］．　　　　

　　 　　 　　　　　　　　　　　 　　　 　　　　　　　　　　　 ，２０１２，３４（１）：１ ６．（相飞，

廖桂生，曾操．空时自适应处理对 ＧＰＳ 信号影响与补偿方法［Ｊ］．

系统工程与电子技术，２０１２，３４（１）：１ ６．）

［７］Ｚｈａｏ Ｈ W，Ｌｉａｎ Ｂ W，Ｆｅｎｇ Ｊ．Ａｄａｐｔｉｖｅ ｂｅａｍｆｏｒｍｉｎｇ ａｌｇｏｒｉｔｈｍ

ｆｏｒ ｓｐａｃｅ-ｔｉｍｅ ｉｎｔｅｒｆｅｒｅｎｃｅ ｓｕｐｐｒｅｓｓｉｏｎ ｉｎ ＧＮＳＳ ｒｅｃｅｉｖｅｒｓ［Ｊ］．

　　　　　 　　 　　　　　　　　　　　 　　　 　　　　　　　　　　　 ，２０１２，３４ （７）：１３１２

１３１７．（赵宏伟，廉保旺，冯娟．ＧＮＳＳ 抗干扰接收机的自适应波束

形成算法［Ｊ］．系统工程与电子技术，２０１２，３４（７）：１３１２ １３１７．）

［８］Ｓｃｈｒｅｉｂｅｒ Ｒ．Ｉｍｐｌｅｍｅｎｔａｔｉｏｎ ｏｆ ａｄａｐｔｉｖｅ ａｒｒａｙ ａｌｇｏｒｉｔｈｍｓ［Ｊ］．

　 　　　 　　　　　 　　　 　　　　　　　　　 ，　　　　　　 　　　 　　　　　　 　　　　　　　　　　 ，

１９８６，３４（５）：１０３８ １０４５．

［９］Ｇｕｏ Ｄ，Ｓｈａｍａｉ Ｓ，Ｖｅｒｄｕ Ｓ．Ｅｓｔｉｍａｔｉｏｎ ｉｎ Ｇａｕｓｓｉａｎ ｎｏｉｓｅ：ｐｒｏ-

ｐｅｒｔｉｅｓ ｏｆ ｔｈｅ ｍｉｎｉｍｕｍ ｍｅａｎ-ｓｑｕａｒｅ ｅｒｒｏｒ［Ｊ］．　 　　　 　　　　　 　　　

　　　　　　　　　　　 　　　　　　 ，２０１１，５７（４）：２３７１ ２３８５．

［１０］Mｏｈａｍｅｄ Ｅ Ａ，Ｔａｎ Ｚ．Ａｄａｐｔｉｖｅ ａｎｔｅｎｎａ ｕｔｉｌｉｚｉｎｇ ｐｏｗｅｒ ｉｎｖｅｒ-

ｓｉｏｎ ａｎｄ ｌｉｎｅａｒｌｙ ｃｏｎｓｔｒａｉｎｅｄ ｍｉｎｉｍｕｍ ｖａｒｉａｎｃｅ ａｌｇｏｒｉｔｈｍｓ［Ｊ］．

　　　　　　　 　　　　　　　 　　 　　　　　　　　　　　 ，２００５，１８（２）：１５３ １６０．

［１１］Ｆａｎｔｅ Ｒ Ｌ，Ｆｉｔｚｇｉｂｂｏｎｓ M Ｐ，MｃＤｏｎａｌｄ Ｋ Ｆ．Ｅｆｆｅｃｔ ｏｆ ａｄａｐ-

ｔｉｖｅ ａｒｒａｙ ｐｒｏｃｅｓｓｉｎｇ ｏｎ ＧＰＳ ｓｉｇｎａｌ ｃｒｏｓｓｃｏｒｒｅｌａｔｉｏｎ［Ｃ］∥　　　　 　

　　 　　　 　　　　　　　　　 　　 　　　　　　　　　　 　　　　　　 　　　　　　　　　　 　　　　　　　　　

　　　　　 　，２００４：５７９ ５８３．

作者简介：

赵宏伟（１９８０ ），男，讲师，博士，主要研究方向为卫星定位导航、自

适应信号处理。

Ｅ-ｍａｉｌ：ｈｏｎｇｖｉ　ｚｈａｏ＠１２６．ｃｏｍ

冯　娟（１９８３ ），女，博士研究生，主要研究方向为无线通信、自适应

信号处理。

Ｅ-ｍａｉｌ：ｆｅｎｇｊｕａｎｋｈ＠ｈｏｔｍａｉｌ．ｃｏｍ

廉保旺（１９６２ ），男，教授，博士，主要研究方向为卫星通信、嵌入式

系统设计。

Ｅ-ｍａｉｌ：ｂｗｌｉａｎ＠ｎｗｐｕ．ｅｄｕ．ｃｎ



 

专注于微波、射频、天线设计人才的培养 易迪拓培训
网址：http://www.edatop.com  

 

如 何 学 习 天 线 设 计 

 

天线设计理论晦涩高深，让许多工程师望而却步，然而实际工程或实际工作中在设计天线时却很

少用到这些高深晦涩的理论。实际上，我们只需要懂得最基本的天线和射频基础知识，借助于 HFSS、

CST 软件或者测试仪器就可以设计出工作性能良好的各类天线。 

易迪拓培训(www.edatop.com)专注于微波射频和天线设计人才的培养，推出了一系列天线设计培

训视频课程。我们的视频培训课程，化繁为简，直观易学，可以帮助您快速学习掌握天线设计的真谛，

让天线设计不再难… 

 

HFSS 天线设计培训课程套装 

套装包含 6 门视频课程和 1 本图书，课程从基础讲起，内容由浅入深，

理论介绍和实际操作讲解相结合，全面系统的讲解了 HFSS 天线设计的

全过程。是国内最全面、最专业的 HFSS 天线设计课程，可以帮助你快

速学习掌握如何使用 HFSS 软件进行天线设计，让天线设计不再难… 

课程网址：http://www.edatop.com/peixun/hfss/122.html 

CST 天线设计视频培训课程套装 

套装包含 5 门视频培训课程，由经验丰富的专家授课，旨在帮助您从

零开始，全面系统地学习掌握 CST 微波工作室的功能应用和使用 CST

微波工作室进行天线设计实际过程和具体操作。视频课程，边操作边

讲解，直观易学；购买套装同时赠送 3 个月在线答疑，帮您解答学习

中遇到的问题，让您学习无忧。 

详情浏览：http://www.edatop.com/peixun/cst/127.html  

 

 

13.56MHz NFC/RFID 线圈天线设计培训课程套装 

套装包含 4 门视频培训课程，培训将 13.56MHz 线圈天线设计原理和仿

真设计实践相结合，全面系统地讲解了 13.56MHz 线圈天线的工作原

理、设计方法、设计考量以及使用 HFSS 和 CST 仿真分析线圈天线的

具体操作，同时还介绍了 13.56MHz 线圈天线匹配电路的设计和调试。

通过该套课程的学习，可以帮助您快速学习掌握 13.56MHz 线圈天线及

其匹配电路的原理、设计和调试… 

详情浏览：http://www.edatop.com/peixun/antenna/116.html 
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专注于微波、射频、天线设计人才的培养 易迪拓培训
网址：http://www.edatop.com 

 

关于易迪拓培训： 

易迪拓培训(www.edatop.com)由数名来自于研发第一线的资深工程师发起成立，一直致力和专注

于微波、射频、天线设计研发人才的培养；后于 2006 年整合合并微波 EDA 网(www.mweda.com)，

现已发展成为国内最大的微波射频和天线设计人才培养基地，成功推出多套微波射频以及天线设计经

典培训课程和 ADS、HFSS 等专业软件使用培训课程，广受客户好评；并先后与人民邮电出版社、电

子工业出版社合作出版了多本专业图书，帮助数万名工程师提升了专业技术能力。客户遍布中兴通讯、

研通高频、埃威航电、国人通信等多家国内知名公司，以及台湾工业技术研究院、永业科技、全一电

子等多家台湾地区企业。 

 

我们的课程优势： 

※ 成立于 2004 年，10 多年丰富的行业经验 

※ 一直专注于微波射频和天线设计工程师的培养，更了解该行业对人才的要求 

※ 视频课程、既能达到了现场培训的效果，又能免除您舟车劳顿的辛苦，学习工作两不误 

※ 经验丰富的一线资深工程师主讲，结合实际工程案例，直观、实用、易学 

 

联系我们： 

※ 易迪拓培训官网：http://www.edatop.com 

※ 微波 EDA 网：http://www.mweda.com 

※ 官方淘宝店：http://shop36920890.taobao.com 
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