

Dual -Polarized Slot -Coupled Microstrip Antenna with Very High Isolation

ZHONG Shun-shi(钟顺时), LIANG Xian-ling(梁仙灵), WANG Wei(汪伟)

School of Communication and Information Engineering, Shanghai University, Shanghai 200072, P.R. China

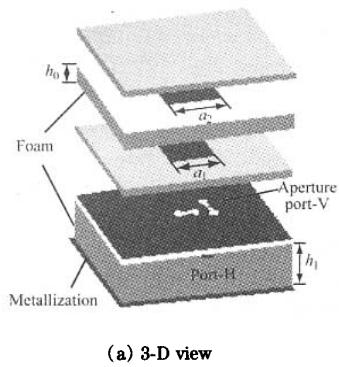
Abstract A wideband dual-polarized slot-coupled stacked microstrip antenna with very high isolation and low cross-polarization is presented. To improve isolation between two polarization ports, the stacked patches are excited by an open-ended and a T-shaped microstrip lines both via two H-shaped slots placed in a “T” configuration. The measured isolation is better than 40.5 dB over the bandwidth from 8.8 to 9.8 GHz with cross-polarization level less than -28.5 dB. The measured $VSWR \leq 2$ bandwidths reach 20.7% and 19.1% at the vertical and horizontal polarization ports, respectively. This antenna is suitable to be used as array elements in spaceborne synthetic aperture radars (SAR) and active phased array radars.

Key words microstrip antenna, dual-polarization, isolation, cross-polarization.

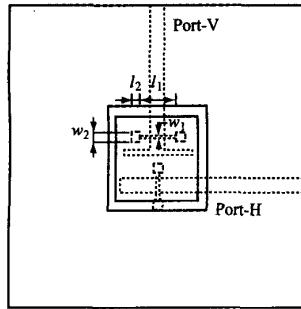
1 Introduction

Dual linearly polarized antennas are increasingly required in communications and radar systems whose essential demands are high isolation and low cross-polarization^[1-3]. A classical approach to enhance polarization purity is reported in Ref. [4], where a dual-polarized slot-coupled stacked patch antenna with two offset orthogonal slots is described. Two open-ended microstrip lines are placed on the same layer, resulting in isolation of about 18dB. Another dual-polarized stacked patch antenna with cross-slot, achieving isolation better than 20 dB, is reported in Ref. [5], but it requires a complex multilayer structure. A dual-polarized microstrip ring antenna with three coupling slots is introduced in Ref. [6], resulting in isolation of 30 dB with cross-polarization level of -25 dB. In Refs. [7] and [8], two H-shaped slots and two L-shaped microstrip lines are used to realize dual-polarized operation of a stacked patch antenna, whose isolation is increased to 36 dB with -22 dB cross-polarization. In this letter, by using both an open-ended and a T-shaped microstrip lines to excite stacked patches through double H-shaped slots, very high isolation is achieved. This is confirmed in the experiments. The design procedure and experimental results are presented.

2 Antenna Design


Fig. 1(a) is a decomposed view of a dual-polarized slot-coupled microstrip patch antenna. The proposed antenna consists of three dielectric substrates and two foam layers. The upper square patch of side length a_2 is printed on the back of the first substrate, and the lower square patch of side length a_1 is on the second substrate, separated from the upper one by a foam layer of thickness h_0 . The microstrip feed lines are printed on the back of the third substrate while a ground plane is on its front with two H-shaped slots placed in a “T” configuration. One slot is fed from an open-ended microstrip line and the other from a T-shaped microstrip line so as to enhance isolation between two input ports and suppress cross-polarization. Besides, in order to improve the front-to-back ratio, another ground plane is placed below the feed circuit and a second foam layer of thickness h_1 inserted to separate them. All substrates have permittivity $\epsilon_r = 2.94$ and a thickness $h = 1.524$ mm. The H-shaped slot is defined by parameters l_1 , w_1 , l_2 , and w_2 as shown in Fig. 1(b).

Computer simulation is carried out using Ansoft HFSS, a commercial 3-D electromagnetic simulator based on the finite element method. The design parameters are optimized to improve the slot coupling and return loss. A test antenna is then designed and fabricated. The patch parameters are $a_1 = 7.7$ mm, $a_2 = 9.5$ mm,


Received Mar. 20, 2005; Revised Apr. 11, 2005

ZHONG Shun-shi, Prof., E-mail: sszhongf@163.com

and $h_0 = 2.8$ mm; the slot parameters for port-V are $l_1 = 2.5$ mm, $l_2 = 0.75$ mm, $w_1 = 0.3$ mm, $w_2 = 1$ mm; the slot parameters for port-H are $l_1 = 3.5$ mm, $l_2 = 0.75$ mm, $w_1 = 0.3$ mm, $w_2 = 1$ mm.

(a) 3-D view

(b) Top view

Fig.1 Configuration of the dual-polarized slot coupled antenna

3 Experimental Results

The test antenna's return loss and isolation measured by 8720ES network analyzer are plotted in Fig 2. The measured frequency bandwidths defined by $VSWR \leq 2$ are 20.7% covering 8.2 to 10.1 GHz at port-V, and 19.1% covering 8.5 to 10.3 GHz at port-H, respectively. Through out the frequency region from 8.2 to 10.3 GHz, the measured isolation is higher than 38.5 dB; and in the operating bandwidth 8.8 – 9.8 GHz, the measured isolation is better than 40.5 dB.

Fig. 3 shows the measured and simulated E-plane and H-plane radiation patterns for port-V excitation only. Cross-polarization levels in both E-plane and H-plane are about -30 dB in the main beam region at 9.3 GHz. For all patterns observed (including the patterns for port-H), the measured patterns are stable in the operating frequency band and the cross-polarization levels are less than -28.5 dB.

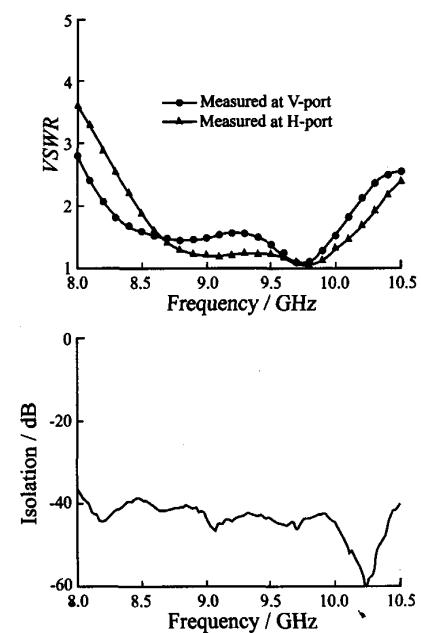
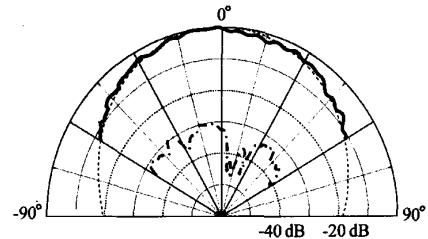
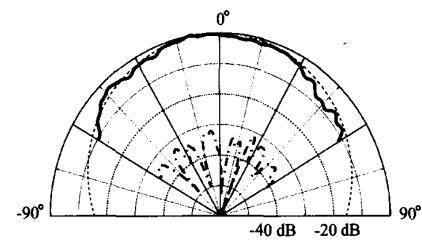




Fig.2 Measured VSWR and isolation

(a) E-plane

(b) H-plane

..... Simulated co-pol;
— Measured co-pol;
— Measured cross-pol

Fig.3 Radiation patterns at 9.3 GHz for port-V

4 Conclusions

A stacked dual-polarized microstrip patch antenna excited by both an open-ended and a T-shaped microstrip lines through two H-shaped slots has been studied, which achieves wide bandwidths (20.7% at port-

V and 19.1% at port-H), very high isolation (better than 40.5 dB), lower level of cross-polarization (less than -28.5 dB), and stable radiation patterns. This antenna is suitable to be used as array elements in spaceborne synthetic aperture radar (SAR) and active phased array radar applications.

References

[1] Pozar D M, Schaubert D H. Microstrip Antenna, the Analysis and Design of Microstrip Antennas and Arrays [M]. IEEE Press, Piscataway, NJ, 1995.

[2] Gao S C, Zhong S S. Dual-polarized microstrip antenna array with high isolation fed by coplanar network [J]. *Microw. Opt. Technol. Lett.*, 1998, 19 (3): 214 - 216.

[3] Liang X L, Zhong S S, Wang W. Cross-polarization suppression of dual-polarization linear microstrip antenna array [J]. *Microw. Opt. Technol. Lett.*, 2004, 42(6): 448 - 451.

[4] Adrian A, Schaubert D H. Dual aperture-coupled microstrip antenna for dual or circular polarization [J]. *Electron. Lett.*, 1987, 23(23): 1226 - 1228.

[5] Chakrabarty S B, Klefenz F, Dreher A. Dual polarized wide-band stacked microstrip antenna with aperture coupling for SAR applications [A]. *IEEE Antennas and Propagation Int. Symp. Dig.* [C]. USA, 2000, 2216 - 2219.

[6] Parker G S, Antar Y M M, Ittipiboon A, et al. Dual polarized microstrip ring antenna with good isolation [J]. *Electron. Lett.*, 1998, 34(11): 1043 - 1044.

[7] Gao S C, Li L W, Gardner P, et al. Dual-polarized wide-band microstrip antenna [J]. *Electron. Lett.*, 2001, 37 (18): 1106 - 1107.

[8] Gao S C, Li L W, Leong M S, et al. Wideband dual-polarized slot-coupled planar with wide bandwidth [J]. *IEEE Trans. Antennas Propagat.*, 2003, 51(3): 441 - 448.

(Editor YAO Yue-yuan)

如何学习天线设计

天线设计理论晦涩高深，让许多工程师望而却步，然而实际工程或实际工作中在设计天线时却很少用到这些高深晦涩的理论。实际上，我们只需要懂得最基本的天线和射频基础知识，借助于 HFSS、CST 软件或者测试仪器就可以设计出工作性能良好的各类天线。

易迪拓培训(www.edatop.com)专注于微波射频和天线设计人才的培养，推出了一系列天线设计培训视频课程。我们的视频培训课程，化繁为简，直观易学，可以帮助您快速学习掌握天线设计的真谛，让天线设计不再难…

HFSS 天线设计培训课程套装

套装包含 6 门视频课程和 1 本图书，课程从基础讲起，内容由浅入深，理论介绍和实际操作讲解相结合，全面系统的讲解了 HFSS 天线设计的全过程。是国内最全面、最专业的 HFSS 天线设计课程，可以帮助你快速学习掌握如何使用 HFSS 软件进行天线设计，让天线设计不再难…

课程网址: <http://www.edatop.com/peixun/hfss/122.html>

CST 天线设计视频培训课程套装

套装包含 5 门视频培训课程，由经验丰富的专家授课，旨在帮助您从零开始，全面系统地学习掌握 CST 微波工作室的功能应用和使用 CST 微波工作室进行天线设计实际过程和具体操作。视频课程，边操作边讲解，直观易学；购买套装同时赠送 3 个月在线答疑，帮您解答学习中遇到的问题，让您学习无忧。

详情浏览: <http://www.edatop.com/peixun/cst/127.html>

13.56MHz NFC/RFID 线圈天线设计培训课程套装

套装包含 4 门视频培训课程，培训将 13.56MHz 线圈天线设计原理和仿真设计实践相结合，全面系统地讲解了 13.56MHz 线圈天线的工作原理、设计方法、设计考量以及使用 HFSS 和 CST 仿真分析线圈天线的具体操作，同时还介绍了 13.56MHz 线圈天线匹配电路的设计和调试。通过该套课程的学习，可以帮助您快速学习掌握 13.56MHz 线圈天线及其匹配电路的原理、设计和调试…

详情浏览: <http://www.edatop.com/peixun/antenna/116.html>

关于易迪拓培训:

易迪拓培训(www.edatop.com)由数名来自于研发第一线的资深工程师发起成立,一直致力于专注于微波、射频、天线设计研发人才的培养;后于 2006 年整合合并微波 EDA 网(www.mweda.com),现已发展成为国内最大的微波射频和天线设计人才培养基地,成功推出多套微波射频以及天线设计经典培训课程和 **ADS**、**HFSS** 等专业软件使用培训课程,广受客户好评;并先后与人民邮电出版社、电子工业出版社合作出版了多本专业图书,帮助数万名工程师提升了专业技术能力。客户遍布中兴通讯、研通高频、埃威航电、国人通信等多家国内知名公司,以及台湾工业技术研究院、永业科技、全一电子等多家台湾地区企业。

我们的课程优势:

- ※ 成立于 2004 年, 10 多年丰富的行业经验
- ※ 一直专注于微波射频和天线设计工程师的培养, 更了解该行业对人才的要求
- ※ 视频课程、既能达到了现场培训的效果, 又能免除您舟车劳顿的辛苦, 学习工作两不误
- ※ 经验丰富的一线资深工程师主讲, 结合实际工程案例, 直观、实用、易学

联系我们:

- ※ 易迪拓培训官网: <http://www.edatop.com>
- ※ 微波 EDA 网: <http://www.mweda.com>
- ※ 官方淘宝店: <http://shop36920890.taobao.com>