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Abstract; To overcome the disadvantage of low radiation power for photoconductive antenna, three

types of antennas, including dipole, bow-tie and spiral antennas, are studied, where finite

integration technology are used to compute their radiation impedances. The simulation results

show that the impedance of dipole antenna is dependent on the dipole length, width,

photoconductive gap and the width of transmission line, and has a peak value in resonant

frequency, so the dipole antenna is suitable for applications working at specific terahertz

frequency. The bow-tie and spiral antennas, known as broadband antennas, have approximately

stable impedance over the terahertz frequency range under study. The simulation results also show

that, the interdigitated fingers, which can be modelled as an additional capacitance, cause the

antenna impedance to fall dramatically at high frequency.
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0 Introduction

The terahertz ( THz)
electromagnetic spectrum, typically considered to
occupy 100 GHz to 10 THz, lies

microwave and infrared. Terahertz radiation can

region of the
between

penetrate many materials with modest attenuation,
and lots of chemical substances and explosive
materials exhibit characteristic spectral responses
at terahertz frequencies. Additionally, being at sub-
millimeter wavelengths, it is of low energy and
These
terahertz radiation a potentially powerful technique
in the

non-ionising. unique properties make

security screening!'®, non-destructive
testing'™ ,and medical imaging™?.

Photoconductive antennas, which can work at
room temperature, are widely used in pulsed and
continuous terahertz generation and detection'>%,
As continuous-wave terahertz emitters, they are
usually used as photomixers pumped by two light
beams whose frequency difference is in the
terahertz range. The output of terahertz beam has
linewidth,

properties, but the main restriction is their limited

narrow and wide range
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terahertz radiation power. The terahertz output
power for photoconductive antenna is proportional

impedance  according = to

(7-8]

to its radiation

photomixing principle Many researchers have
performed optimization of antenna design to
improve their radiation properties. Mclntosh, et al
experimentally compared the output power from
spiral antennas with different photoconductive gap
areas’™. Grogery, et al studied the terahertz
emission from bow-tie antenna with bare gap and
interdigitated fingers, and concluded that the
terahertz output efficiency at high frequencies was
additionally dependent on the design of photomixer

0] Theoretical methods were presented by

fingers
Brown to evaluate the terahertz output power from
structures consisting of

[11]

photoconductive
interdigitated electrodes The dependence of
carrier lifetime and carrier velocity on the electric
field was taken into account by Saeedkia,et alt'?!,
This paper systematically and theoretically
studies three types of antennas with different
mechanical designs, and compares their radiation

impedances through simulation.

1 Photoconductive antennas

Three types of photoconductive antennas,

including dipole antenna™, bow-tie antenna'*''®

[9,14]

and spiral antenna , are studied in this paper.

Fig. 1 shows the schematic diagrams of the three
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The dipole

antenna with two designs of electrodes coupled to

kinds of photoconductive antennas.
the external circuit is shown in Fig. 1(a),and an
equivalent circuit, which is suitable for bow-tie and

spiral antenna too,is given in Fig. 2.

Simple photoconductive gap

725

ith interdigitated fingers

\B

=

}/

(a)Dipole antenna

X@

. (b)Bow-tie antenna (c)Spiral antenna
Fig.1 Schematic diagrams of dipole antenna,

bow-tie antenna and spiral antenna

~

Fig. 2 Equivalent circuit for the biased
photoconductive antenna

In the antenna design,there are two categories

of photoconductive antennas, one with simple gap
and the other with interdigitated fingers. In the
former case, Ref [ 8] has demonstrated that the
antenna length and width have effects on resonant
frequency for dipole antenna. Photoconductive gap
and transmission line width are the other main
parameters for dipole antenna too. Bow-tie angle
and turns of spiral affect the radiation properties
for bow-tie antenna and spiral antenna,
respectively.

technique to

Photomixing is a generate

continuous-wave terahertz radiation with

The
follows

procedure for
0112l A bias

fabricated on a

photoconductive antennas.
photomixing proceeds as
photoconductive  antenna
semiconductor is illuminated with an optical beam.
The optical beam generates {ree carriers in the
photoconductive gap, when the photon energy of
the optical beam is larger than the band gap of the
lifetime of the

semiconductor. If the carrier

semiconductor is short enough under bias

condition,it can respond to the current modulation

in the photoconductive antenna. Terahertz radiation
generates and is emitted into free space.
Continuous-wave terahertz emission occurs by
illuminating the electrode gap with two single-
mode continuous-wave laser beams, whose average
power is P; and P;,and angular frequency is w, and
w; » respectively, The instantaneous optical power

incident on the antenna is given below ']

P(w,t)=P,+P,+2 /mP;P,cos (wt +¢) (D
2
P, = j(meo %)ds (=1.2w=w —w) (2

where P,(i=1,2) are averaged powers of the two
beams,c is the speed of light in vacuum,n is the
refractive index of the media, e, is the dielectric
constant of vacuum,g is the relative phase between
the two optical beam, and m is the spatial-mixing
The

difference of the two incident laser beams w can be

efficiency of the two beams. frequency
tuned in the terahertz frequency range and the
integration in équation (2) is carried out over the
beam cross section.

The carrier density in the photoconductive gap
is given by

dn

de

where n is the photo-excited carrier number, 5 is

_ _n )
=9P(w,t) . (3)

the excitation efficiency,and ¢ is the photo-excited
carrier lifetime.

Using the equivalent circuit diagram for the
photoconductive antenna and the equation (3),the
terahertz output power Pry,(w) is given by

JiR,
2[ 1+ (wp)? J[1+ (wR.O)* ]
where J, (=G,V,) is the DC photocurrent, G, is
for the

‘ PTHz(w): 4

the time-averaged photoconductance
average total incident power,V, is the bias voltage,
Ra is the radiation impedance of the antenna,and C
is the capacitance of the photoconductive gap. Ry =
1/G, where G is the photoconductance of the
antenna.

Equation (4) shows that the terahertz output
power is proportional to the radiation impedance of
the antenna,and the square of DC conductance and
Since  the  impedance  of

bias  voltage.

photoconductive  antenna is important for
continuous-wave terahertz radiation, the impedance
characteristics of these above three types of

photoconductive antennas are studied.

2 Simulation results

In the simulation, the impedances of different

antennas are calculated numerically as a function of
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frequency based on finite integration technique.
The antenna geometries are firstly defined within a
finite-element mesh and metal electrodes as perfect
electrical conductors,and the terahertz radiation is
modeled by generating a Gaussian terahertz wave
in the photoconductive gap and examining the
frequency-dependent current and voltage at the
antenna feed. The antenna radiation impedance is
calculated by monitoring the voltage and current
within the antenna. Finally, the curves of
impendence are plotted as a function of frequency.

Fig. 3 shows the results for dipole antennas
with two different antenna lengths, where (a) is 40
pum and (b) is 80 pm. The parameters for dipole
antennas in Fig. 3 are dipole length, dipole width,
photoconductive gap and transmission line width.
In Fig. 3, the Dipole T 40/10/10/10 stands for a
dipole antenna with dipole length 40 pm, dipole
width 10 pm, photoconductive gap 10 pm and
transmission line width 10 pm. The simulation
results in 3 (a) and 3 (b) show fundamental
resonant frequencies of about 0. 85 THz and
0.76 THz,respectively, which have relatively high
impedances of a few 1 000 Q. Other weak resonant
frequencies also exist when the dipole length
becomes short enough. The resonant frequency
moves towards higher frequency domain as the gap
size becomes larger, where the resonant frequency

for Dipole I (0.86 THz) is higher than Dipole [l

—— Dipole 1 40/10/10/10
c 4000 F ---- Dipole 11 40/10/10/20
s r  x T Dipole [l 40/10/5/10
23000 - === Dipole IV 40/10/5/20
=
53
[=¥
€ 2000
<
=
g
£ 1000

0 0.5 1.0 1.5 2.0 25 3.0
Frequency/THz

(a)40 um dipole length
—— Dipole V 80/10/10/10

= 3000 ] -~~~ Dipole VI 80/10/10/20
s | oo Dipole VIl 80/10/5/10
8 s Dipole VIl 80/10/5/20
2000
2
£
g
£ 1000
£
<
0

0 0.5 1.0 1.5 2.0 2.5 3.0
Frequency/THz .

(b)40 um dipole length

Fig. 3 Impedances of Dipole antennas

(0. 84 THz). Moreover, the resonant impedance
becomes smaller when the transmission line width
becomes largef. It is shown from Fig. 3 that, the
resonant frequency moves towards lower frequency
domain when the dipole length becomes longer,
which is consistent with the experimental results in
ref [8]. However, even when the antenna length
becomes very short, high resonant frequency can
not be achieved'™. The simulation results also
show that the resonant frequency moves towards
lower frequency domain as the dipole width
becomes larger. The dipole antennas mentioned
above are a kind of end-feed dipole antenna
all’®, the

frequency of which is inversely proportional to the

proposed by Gregory et resonant
dipole length. This conclusion is supported by the
results of calculation.

The parameters for bow-tie antenna are
antenna length, bow-tie angle and photoconductive
gap. It is shown in Fig. 4 that, the antenna
impedance becomes lower as the bow-tie angle
becomes  larger, and the influence of
photoconductive gap is evident at high frequency.
Moreover, the bow-tie antenna has approximately
stable impedance of about a few 100 Q over the

calculated frequency range.

F —Bow-tie | 1 mm/30/10*10 pm?
-~~"Bow-tie Il 1 mm/30/10*10 pm?
- Bow-tie Il 1 mm/30/10*10 pm?
A~ Bow-tie IV 1 mm/30/10%10 pm?

I

=)

IS
T

Antenna impedance/ohm
8
(=]
T

0 0.5 1.0 1.5 20 25 3.0
Frequency/THz

0 I 1

Fig. 4 Impedances of Bow-tie antennas
The spiral antennas under simulation is a kind
constant

of self-complimentary spiral with a

impedance of 188. 5 Q for a semiconductor half-

L] Fig. 5 shows the simulation results for

space
Spiral antenna [, I, [T, IV. The parameters for
spiral antenna are turns of spiral and
photoconductive gap. It can be concluded that, the
impedance in high frequency domain becomes
higher as the photoconductive gap becomes larger.
Meanwhile, the turns of spiral has little effect on
the impedance when the other parameters are the
same. Fig. 5 indicates- that spiral antenna is also a

type of broadband antenna.
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In the latter case of antenna design, the

Impedances of Spiral antennas

interdigitated fingers are modeled as a lumped
capacitance in parallel with the photoconductive
active area. Fig. 6 shows that the simulation results
for three types of antennas with interdigitated
fingers, the capacitances of which are about 1 fF*
for the case of the active area of 100 um?, the
electrode width of 0. 5 pm and the width of the gap
between the electrodes of 1.5 pm. Fig. 6(a) shows
that fundamental resonant frequency still exist for
the dipole antenna with interdigitated fingers, but
the resonant frequency moves to lower and the
radiation impedance decreases as the frequency
goes up to 3 THz. For bow-tie antenna and spiral
antenna,it can be seen in Fig. 6(b) and (c) that the
additional

causes the antenna impedance to fall dramatically

capacitance of interdigitated fingers
at frequency beyond 0. 5 THz, which has been
presented experimentally by Gregory and Brown et
al. that the capacitive effect makes the radiation
frequency

impedance fall apparently as the

increasest !,

The above simulations results show that, the
dipole antenna has the property of high impedance,
no less than a few thousand ohms around the
fundamental resonant frequency, while the bow-tie
and spiral antenna have stable impedance about a
few hundred ohms over the calculated frequency
As the

proportional to the

range. terahertz radiant power is

antenna impedance, the
magnitude of the resonant power for dipole antenna
increases by up to an order of magnitude at the
compared with broadband

specific frequency,

antennas such as bow-tie antenna and spiral
antenna. In fact, remarkable improvement (of
terahertz output power has been achieved with
high-impedance antenna desigﬁs as dual-dipole and

dual-slot antennast™.
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Fig. 6 Impedances of three kinds of antennas

with and without interdigitated fingers

3 Conclusions

In summary, we have studied the impedance
three types
antennas for continuous terahertz radiation. The

properties of of photoconductive
results show that dipole antenna, as a kind of
resonant antenna, has high radiation impedance
around the resonant frequency, which can result in
efficient terahertz radiation at some specific
frequency. The bow-tie and spiral antennas are
more suitable for broadband terahertz applications,
because they have stable impedance over a quite
broad frequency range. Moreover, the interdigitated
fingers have effect on the three types of antennas at
high frequencies. All the above antennas will be
studied

terahertz system in future.

experimentally in our continuous-wave
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