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0 引言 

卫星导航系统天线阵接收机波束指向误差分析 

李 敏，曾祥华，聂俊伟，王飞雪 

(国防科技大学电子科学与工程学院卫星导航研发中心，湖南 长沙 410073) 

摘要： 研究表明：卫星导航系统阵元几何位置误差是影响波束指向误差的主要因素，而 

卫星和接收机位置误差则影响甚微，其中千米级的卫星位置误差以及接收机位置误差导致的 

波束指向误差不超过 0．1。，而毫米级的阵元几何位置随机误差可导致典型 7阵元天线阵波束 

指向误差达到几度。该研究成果可为卫星导航 系统天线阵接收机的设计提供依据 。 
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Analysis on beam pointing error of antenna array receivers 

in satellite navigation systems 

Li Min，Zeng Xianghua，Nie J unwei，Wang Feixue 

(Satellite Navigation R&D Center，School of Electronic Science and Engineering， 

National University of Defense Technology，Changsha 410073，Hunan，China) 

Abstract：The study results show that kilometer-level satellite position uncertainty and receiver position 

uncertainty only lead to less than 0．1-degree beam pointing eiror，and millimeter-level antenna array element 

position error can lead to several degrees’beam pointing error in a classic 7-element array．This study will pro— 

vide reference to the design of antenna array receivers in satellite navigation systems． 
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卫星导航系统中，到达地球表面的卫星信号十分 

微弱，接收机极易受到干扰。采用数字波束形成算法 

的天线阵可灵活控制波束指向和增益。在最大信干噪 

比准则下，根据卫星方向和天线阵元几何分布等先验 

信息，可使天线阵分别形成对准每一个可视卫星的波 

束，有效增大各个卫星信号的接收信噪比，提高测距和 

定位精度_1 ]。然而，引导波束指向的先验信息可能 

存在误差，例如星历、接收机位置、阵元位置误差等，均 

可能导致天线阵波束指向偏离实际卫星方向，降低天 

线阵接收增益。 

迄今为止研究文献大多关注最大信干噪比准则下 

波束指向误差的影响和校正[3 ]，这些研究中波束指 
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向误差的大小均基于理论假设，而关于波束指向误差 

的实际范围以及影响因素却未见报道。本文定量分析 

了先验信息误差对卫星导航系统天线阵波束指向的影 

响，可为天线阵接收机的工程设计提供参考。 

1 阵列信号模型 

假设天线阵由 N个全向阵元组成，接收机参考点 

处的有用信号为 (￡)，其余信号以及各种干扰用 J (z) 

表示，那么总的阵列接收信号可表示为N维矢量嘲： 

( )：a0 s(￡)+ >：aiJ (f)+，l( ) (1) 
1 

式中N 表示干扰数目，a。、n 分别为有用信号和干扰 

的导向矢量，，l(￡)为阵列通道噪声矢量，一般假设各通 

道噪声相互独立，且信号、干扰、噪声之间互不相关。 

阵列信号 (z)的统计特性是权值计算的重要根 

据，其自相关矩阵可表示为： 

R =E( (￡) ( ))=R + +R (2) 

式中 、R 和 分别表示有用信号、干扰和噪声的自 

相关矩阵。卫星导航系统中，有用信号到达接收机的功 
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率一般远远低于噪声和强干扰，常用 J 代替R + 

R ，因此最大信干噪比(Maximum SINR)准则下的最 

优加权矢量可表示为： 

W (Ri +R )I1口0≈ 艉二 no (3) 

式中 为归一化常数， 可根据阵列接收信号 (￡)通 

过 E( (￡)” (￡))直接估计，而有用信号的导向矢量口0 

可根据先验信息获得。可以看出， (主要成分为噪 

声和强干扰)主导着天线阵方向图的零陷位置，有用信 

号的导向矢量a。主导着天线阵的主波束指向。 

根据加权矢量 w，遍历空间入射角可得到天线阵 

方向图函数[7]： 

F( ， )：1 w”a(O， )I (4) 

式中，I．1表示对复数取模，a( ，9)表示仰角为 0、方 

位角为 的信号导向矢量，又称扫描矢量。天线阵方 

向图最大值对应的信号入射方向(oM、 )为波束指 

向。假设卫星信号方向为( 、9o)，那么天线阵波束指 

向在仰角方向的误差为 ．一 ，在方位角方向的误差 

为 一 ，而 (Oo、铷)和( 、 )之间的立体角误 

差为： 

arccos(sin0osin0M+cos0oeos0Mcos(9o一9M)) (5) 

下面分析根据先验信息计算导向矢量 n。的方法。 

取天线阵平面的几何中心为参考点 0，建立直角坐标 

系如图 1所示，z轴指向用户所在地的东，Y轴指向用 

户所在地的北， 轴向上， —Y— 满足右手定则。假 

设卫星信号以(0o、 )入射到天线阵，阵元 ，l相对天线 

阵几何中心的坐标为(px ，Py ， )，那么卫星信号 

的导向矢量口。的第 ，1个分量可表示为； 

口0-=exp(2nj(p sin0ocOSgo+Py sin0osingo+ 

pz cos0o)／ ) (6) 

式中 为载波波长。 

图 1 天线阵坐标 系 

卫星信号的仰角 、方位角 可根据卫星位置和 

接收机位置计算得到。首先通过坐标系变换将地心惯 

性(ECI)坐标系下的卫星坐标和用户大地坐标系(经 

度、纬度、高度)下的接收机参考点坐标均变换到地心 

地固(ECEF)坐标 系下，假设卫星的 ECEF坐标为 

(‘，y ， )，接收机参考点的ECEF坐标为(z ，y ， 

)。然后计算卫星到接收机视线方向的单位矢量 e： 

P：d／l}d Il，其中d=( 一 ，Y 一Y ，2 一 )(7) 

式中 If·II表示求矢量的范数。最后，将 ECEF坐标 

系下的单位矢量 e=( ，P ，e )变换到东北天(ENU) 

坐标系(ee，e ，e )，那么信号到达接收机参考点的仰 

角、方位角可由下式求得： 

0o arcsin(e )，‰ arctan2,(￡ ，e ) (8) 

式中arctan2表示四象限反正切函数，仰角 的取值 

范围为 0~=／2，方位角 的取值范围为一7c～7c。 

可见，当卫星位置坐标或接收机参考点坐标的信 

息不准确时，卫星信号入射角的估计将产生误差。当 

把含有误差的卫星位置坐标、接收机参考点坐标和阵 

元几何位置坐标代入公式(6)，计算得到的有用信号导 

向矢量也存在误差，从而影响阵列加权矢量的计算以 

及天线阵的波束指向。需要说明的是，若数字波束形 

成的加权网络在中频或基带，波束指向误差还与接收 

机的硬件电路有关，如天线间的互耦、通道失配以及 

ADC量化误差等，由于篇幅所限，本文仅研究硬件特 

性理想情况下由先验信息造成的波束指向误差范围。 

2 波束指向误差的定量计算 

根据上一节的分析，卫星位置坐标、接收机参考点 

坐标，阵元几何位置坐标三者的精度是影响天线阵波 

束指向的重要因素，下面定量分析这些因素导致的波 

束指向误差范围。 

2．1 墨历数据精度 

卫星导航系统中，星历数据按照精度可分为历书、 

广播星历、精密星历三大类，其中历书的轨道精度在千 

米量级，广播星历的轨道精度为米级，精密星历的轨道 

精度可达厘米级。天线阵波束形成对信号方向信息的 

实时性要求较高，不适合采用精密星历，下面分别用广 

播星历和历书数据对卫星位置进行预测，分析这两种 

类型的星历数据对波束指向误差的影响。 

广播星历取自IGS网站的广播星历数据文件abpo 

1380．10n，参考时刻为 2010年5月 18日14：00：00；历 

书数据取自USCG网站 2010年 5月 15日发布的历 

书数据文件 135．aim。假设接收机参考点坐标位于北 

纬39．9。、东经116．4。、高31．2m的精确已知点，以广 

播星历数据推算的卫星位置(轨道精度为米级)作为参 

考，考查历书数据(轨道精度为千米级)推算的卫星位 

置与参考值的误差以及相应的卫星仰角、方位角计算 

误差，如图i2所示。 

由图2可见，使用历书数据计算的卫星位置虽然与 
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使用广播星历计算的卫星位置相差几百到几千米，但对 

于地面接收机而言，使用两种数据计算得到的卫星信号 

仰角或方位角都相差不到0．1。。经计算，对于地球表面 

的其它位置，卫星信号到达角计算误差也未超过 0．1。。 

可以推断，即使卫星轨道精度由米级提高到厘米级，卫 

星信号到达角计算误差也不过由0．1o降低到更小。 

I一 一 PRNl1l 
I．⋯ PRNl 9l 

· 

l— PRN28} 
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图 2 星历数据误差导致的卫星仰角和方位角估算误差 

直观地解释，GPS卫星的轨道高度为两万多千米， 

当卫星位置(Xs，Y ， )的推算误差为千米级(不到轨道 

高度的万分之一)时，根据公式(7)，卫星到接收机视线 

方向的单位矢量 e变化非常小，因此根据公式(8)，仰 

角、方位角的计算误差也非常小。需要注意的是，星历 

数据的使用需要参考数据的有效期，一般广播星历的有 

效时间为2小时，历书数据的有效时间长达几个月_8]。 

2．2 接收机位置误差 

对于监测站、参考站来说，接收机位置是精确已知 

的；对于位置未知的接收机来说，需要外部输入接收机 

的概略位置，或等待接收机给出定位结果之后才能形 

成指向精确的波束。下面定量分析接收机位置估计误 

差对天线阵波束指向误差的影响。 

使用上一小节中的广播星历数据，取参考时刻的 

卫星位置坐标(该坐标可认为是精确的)，当接收机参 

考点的经纬度或高度估计不准时，接收机位置误差也 

随估计误差的增大而增大，计算卫星仰角、方位角计算 

偏差与接收机位置误差的关系，如图3所示。 

可见，卫星仰角、方位角计算偏差随接收机位置误 

差的增大而增大，当接收机位置误差在 10km范围内 

时，造成的卫星仰角、方位角计算误差均小于 0．r。接 

收机参考点位置误差与卫星位置误差对波束指向误差 

的影响是类似的，当接收机参考点位置坐标(z ，y。， 

)误差为千米级(不到轨道高度的万分之一)时，根据公 

式(7)，卫星到接收机视线方向的单位矢量P变化非常小， 

因此根据公式(8)，仰角、方位角的计算误差也非常小。 

鎏 
薹 
翟 

接收机位置误差／- 

接收机位置误尝￡／l∞ 
(b) 

图3 接收机位置误差导致的卫星仰角方位角估算误差 

2．3 阵元几何位置误差 

阵元几何位置指阵元相对于接收机参考点的位 

置，其误差根据产生原因可分为两类：一类是天线阵安 

装平台姿态不精确引起的整体角度误差，其对波束指 

向造成的影响较为简单，平台俯仰角安装误差将导致 

波束指向仰角产生误差，平台方位角安装误差将导致 

波束指向方位角产生误差；另一类是由机械安装、重力 

或风力变形、天线架变形等因素引起的单个阵元位置 

随机误差，不具可预测性。阵元位置随机误差示意图 

如图4所示，“o”形标记表示阵元的预测位置，“*”形 

标记表示阵元的实际位置。 

下面分析阵元位置随机误差对波束指向的影响。 

以典型的7阵元中心圆阵为例，相邻阵元间距半个载 

亵 壤掣椒嘲 

。 

壤擘嘲 o／栩 躲 椒嘲 
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图 4 随机阵元位 置误 差示意图 

波波长即0．5A。卫星导航系统的载波波长一般在 

厘米量级，例如GPS L1载波波长 为 19cm。根据天线 

架的材质不同，阵元安装误差一般在毫米量级，例如钢 

质平台的安装误差为±lmm，混凝土平台的安装误差为 

±3ram，约为载波波长 的百分之一。因此，假设阵元 

位置坐标误差 Apxn、Apyn、Apzn在±0．O1A内均匀分 

布，进行 1000次蒙特卡罗仿真，统计波束指向误差直方 

图如图 5所示。 

由图6可见，随阵元位置坐标的误差范围增大，波 

束指向误差也随之增大，当阵元位置坐标误差范围达 

到±0．1A时，波束指 向立体角的平均误差接近 6。， 

95 误差落在 l1。以内。需要注意的是，以上数值分 

析中各个阵元的实际位置相比预测位置的偏移方向和 

大小是随机的；若所有阵元的实际位置相比预测位置 

发生整体偏移，即向同一个方向移动了相同的距离，则 

等效于参考点位置发生了变化，而阵元相对参考点的 

位置没有改变，这种误差可归于接收机位置误差进行 

分析。 

综上所述，阵元位置误差对波束指向误差的影响 

较大，一般阵元安装位置误差在毫米量级，导致的波束 

指向误差可达 1。甚至更大。根据天线阵接收机可容 

忍的波束指向误差范围，可合理分配天线阵的安装和 

在线校正精度指标。 

3 结束语 

针对卫星导航系统 ，本文定量 分析 了星历 

数据类型、接收机位置误差以及阵元几何位置 

误差对波束指向误差的影响。结果表明，即使 

使用精度最差的历书数据，造成的波束指向误 

差也不超过 0．1。；一般接收机位置估计误差在 

千米量级，造成的波束指向误差同样也不超过 

0．1。；而阵元几何位置误差是影响波束指向误 

差的主要因素，对于典型的7阵元中心圆阵，当 

波束指向仰角误差／o 波束指向方位角误差／o 波束指向立体角误差／。阵元位置随机误差范围由±0．01A增大至 ± 

图 5 阵元位置误差范围不超过 0．OIA时的波束指向误差统计 

根据图5可见，波束指向的仰角、方位角误差范围 

在 ±2。之内。需要指出的是，仰角误差和方位角误差 

均为零的场景很罕见，仰角误差为零时方位角误差一 

般较大，波束指向立体角误差的统计结果也说明了这 

点，1000次仿真中立体角误差小于 0．1。的场景数不到 

20次。统计结果显示，立体角误差的平均值为 0．54。， 

95 误差落在 1．05。以内。 

将上述仿真中的阵元位置坐标误差范围递增到 

±0．1A，统计每组坐标误差范围对应的波束指向平均 

误差和 95 9／6误差，如图 6所示。 

阵元位置坐标误差范围版 

图6 波束指向误差随阵元位置误差范围的变化曲线 

0．1A时，波束指向平均误差由 0．5。增大到 6。， 

95 误差由 1。增大到 11。。■ 
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如 何 学 习 天 线 设 计 

 

天线设计理论晦涩高深，让许多工程师望而却步，然而实际工程或实际工作中在设计天线时却很

少用到这些高深晦涩的理论。实际上，我们只需要懂得最基本的天线和射频基础知识，借助于 HFSS、

CST 软件或者测试仪器就可以设计出工作性能良好的各类天线。 

易迪拓培训(www.edatop.com)专注于微波射频和天线设计人才的培养，推出了一系列天线设计培

训视频课程。我们的视频培训课程，化繁为简，直观易学，可以帮助您快速学习掌握天线设计的真谛，

让天线设计不再难… 

 

HFSS 天线设计培训课程套装 

套装包含 6 门视频课程和 1 本图书，课程从基础讲起，内容由浅入深，

理论介绍和实际操作讲解相结合，全面系统的讲解了 HFSS 天线设计的

全过程。是国内最全面、最专业的 HFSS 天线设计课程，可以帮助你快

速学习掌握如何使用 HFSS 软件进行天线设计，让天线设计不再难… 

课程网址：http://www.edatop.com/peixun/hfss/122.html 

CST 天线设计视频培训课程套装 

套装包含 5 门视频培训课程，由经验丰富的专家授课，旨在帮助您从

零开始，全面系统地学习掌握 CST 微波工作室的功能应用和使用 CST

微波工作室进行天线设计实际过程和具体操作。视频课程，边操作边

讲解，直观易学；购买套装同时赠送 3 个月在线答疑，帮您解答学习

中遇到的问题，让您学习无忧。 

详情浏览：http://www.edatop.com/peixun/cst/127.html  

 

 

13.56MHz NFC/RFID 线圈天线设计培训课程套装 

套装包含 4 门视频培训课程，培训将 13.56MHz 线圈天线设计原理和仿

真设计实践相结合，全面系统地讲解了 13.56MHz 线圈天线的工作原

理、设计方法、设计考量以及使用 HFSS 和 CST 仿真分析线圈天线的

具体操作，同时还介绍了 13.56MHz 线圈天线匹配电路的设计和调试。

通过该套课程的学习，可以帮助您快速学习掌握 13.56MHz 线圈天线及

其匹配电路的原理、设计和调试… 

详情浏览：http://www.edatop.com/peixun/antenna/116.html 
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关于易迪拓培训： 

易迪拓培训(www.edatop.com)由数名来自于研发第一线的资深工程师发起成立，一直致力和专注

于微波、射频、天线设计研发人才的培养；后于 2006 年整合合并微波 EDA 网(www.mweda.com)，

现已发展成为国内最大的微波射频和天线设计人才培养基地，成功推出多套微波射频以及天线设计经

典培训课程和 ADS、HFSS 等专业软件使用培训课程，广受客户好评；并先后与人民邮电出版社、电

子工业出版社合作出版了多本专业图书，帮助数万名工程师提升了专业技术能力。客户遍布中兴通讯、

研通高频、埃威航电、国人通信等多家国内知名公司，以及台湾工业技术研究院、永业科技、全一电

子等多家台湾地区企业。 

 

我们的课程优势： 

※ 成立于 2004 年，10 多年丰富的行业经验 

※ 一直专注于微波射频和天线设计工程师的培养，更了解该行业对人才的要求 

※ 视频课程、既能达到了现场培训的效果，又能免除您舟车劳顿的辛苦，学习工作两不误 

※ 经验丰富的一线资深工程师主讲，结合实际工程案例，直观、实用、易学 

 

联系我们： 

※ 易迪拓培训官网：http://www.edatop.com 

※ 微波 EDA 网：http://www.mweda.com 

※ 官方淘宝店：http://shop36920890.taobao.com 

 

 
 
 
 
 
 
 
 

 

 

 

  


