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一种新的用于多天线系统的快速球形解码算法

傅华 姚天任 江小平 陈少平
(华中科技大学电子信息与工程系，武汉430074)

摘要：本文提出了一种实现多输入一多输出(MIMO)无线系统最大似然(ML)信号检测的快速球形解码器框架，在本

框架内，算法不需要确定半径参数，同时，在算法的搜索阶段只需要访问最少的树节点数，从而降低算法的复杂度。另外，

当我们采用一种直接的Schnorr—Euchner枚举(SEE)方法时，本球解码框架可用于复数MIMO系统。仿真结果显示，和其它

球形解码器相比，本解码器能大大提升最大似然(ML)检测的速度。
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A New Fast Sphere Decoding algorithm for Multiple—Antenna Systems

Fu Hua Yao Tianren Jiang Xiaoping Chen Shaoping
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Abstract：In this paper，we propose a new fast sphere decoder(SD)for optimum maximum likelihood(ML)signal detection in

multiple-input multiple output(MIMO)wireless systems，which avoids the need for radius parameter and visits minimum number of tree

nodes．Moreover，when a direct Schnorr—Euchner enumeration(SEE)is utilized，the proposed SD Can be used in complex MIMO systems．

Numerical results validate that the proposed SD greatly speeds up the maximum-likelihood(ML)detection than other sphere detectors．
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l 引言

信息论的研究表明[1]，在散射丰富的环境下，多输入一

多输出(MIMO)无线通信系统能获得很高的频谱效率和更可

靠的链接。要得到这一理论结果，往往接收端需要采用最优

的最大似然(ML)检测。而ML检测要考虑所有可能的传输

信号矢量，其复杂度随传输信号矢量的维数(对应于MIMO

系统的发射天线数)成指数增加(基为信号星座的大小)。因

此，当需要获得更高的频谱效率而采用较多的发射天线和较

大的信号星座时，ML检测就显得不实用了，因为此时复杂度

会变得相当高，例如，当我们选择发射天线数M=4，信号星

座为16一QAM时，ML检测需要考虑164=65536个信号矢量，

计算量是相当大的。因此，我们需要找到一种低复杂度同时

具有ML检测性能的检测器。

最近，在MIMO系统信号检测所采用的方法中，基于深

度优先树搜索的球解码(SD)由于其具有较低的计算复杂度

和近似ML检测性能而受到广泛关注[5]一[13]。然而，球解

码器的计算复杂度依赖于初始球半径的选择，同时，当信噪

比(SNR)较低、系统维数较高时，其平均复杂度还是很高。

为了解决初始球半径的选择问题，[5][10][11]提出在解码
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的过程中自动地调整搜索半径，使得解码器的平均复杂度对

初始球半径不是很敏感，而[12]则提出在解码开始之前采用

一些方法找到一个最优的搜索半径。然而，这些ML算法不

能保证在ML检测完成时访问的结点数最少。而访问的节点

数越多意味着复杂度越高。这样看来，球解码算法的复杂度

还有进一步下降的空间。

首先，我们回顾一下球解码算法的搜索过程。球解码算

法的搜索从根节点开始，然后计算与它相连接的分支和结点

的权值，按照一定的测度标准确定下一个要访问的节点，这

样反复进行，直到访问到叶子节点，得到一个可能的解，然后

调整搜索球半径，重新开始搜索，直到得到ML解为止。从球

解码的搜索过程我们可以看出，其目的不是要遍历整棵树，

而是通过访问尽可能少的节点来得到ML解。基于以上的观

察，本文提出一种不需要预先确定搜索半径的球解码算法

f WOR—SD--Sphere Decoder Widl Out the need of Radius param—

eter)，它能保证在搜索到ML解的过程中只访问最少的节点，

从而降低算法的复杂度。

本文的其余部分组织如下：第二部分给出MIMO系统模

型及其格型表示方法；第三部分对球解码算法进行简要的介

绍；第四部分提出一种新的球解码算法WOR-SD；第五部分通
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过仿真实验验证WOR．SD算法的有效性；最后，第六部分给

出本文的重要结论。

2 MlMO系统模型及其格形表示

我们考虑一个带有肘根发射天线和Ⅳ根接收天线的符

号同步的MIMO无线通信系统，并且假设Ⅳ≥M。同时假设

是窄带传输，那么接收信号矢量为

歹=Hi+五 (1)

其中，百是N×M复值信道矩阵，吾=[i，，_2，A，％]7是传输的

符号矢量，五是均值为零、协方差矩阵为2盯2I的复数白高斯

噪声。由于我们假设是散射丰富的环境，信道矩阵的各个元

素可以看成是零均值、独立同分布(i．i．d)的，服从复数高斯

分布。为了叙述的方便，下面我们仅仅考虑M=N的情况。

和文献[6]一样，我们将式(1)转换成如下实的格形表示

形式，

Y=Hs+n (2)

鼽y=篇"=Re(H；祟H
s=[R。：；；]，n=。[Re。(五fi，)Im Im】，8-【(i)J’n 2【(五)j’

这里，Re(·)和Im(·)分别表示(·)的实部和虚部。

由于我们假设H的元素服从独立同分布的复高斯分布，

所以H几乎总是具有满秩m=2M。另外，由于我们只考虑方

形q2_QAM，所以S的所有元素从Q={Mf u=20一g+1，a∈

z。}中取值，其中，Z。={0，1，⋯，q一1}。这样，我们可以定义

一个由H生成的有限维格型A(H)={Hs：S E Q“}，H的m

个行矢量构成生成A(H)的基矢量，m称为A(H)的维数，而

传输的符号矢量s可以看作是格型点的坐标。如果我们把接

收矢量Y看作是受高斯噪声n扰动的格型点，那么，MIMO系

统的ML检测就等效于在格型A(H)中找到一个离接收矢量

y最近的格型点；，即

；=argmin|I Y—Hs旷 (3)

这样我们就可以利用具有较低复杂度的球形解码算法来得

到MIMO系统的ML检测解。

3球形解码算法

在搜索ML解的过程中，球形解码器评估所有满足条件

(4)的传输信号矢量：

||y—Hs旷<C (4)

其中，c为球搜索半径的平方。这样，如果我们能在以接收信

号矢量y为球心，√c为半径的超球内找到使II y—Hs ii2最小

的点，那么该点应该满足式(3)，即为所求的ML解。这就是

球解码算法的基本思想。下面来看看它具体实现的步骤。

首先，对信道矩阵H进行QR分解，得到H=QR，其中Q

是酉矩阵，R是对角元素为正的上三角矩阵，这样，式(4)可

以变换成：

fi矿y—Rs旷=ff Y’一Rs旷<C (5)

利用矩阵R的上三角特性，将上式展开可以得到下列不

等式：
。l 。 12

廿(s7)=羞lY卜三置，is，l<C，z=m，m一1，A，1． (6)

如果我们构建一棵树，使得其底层的叶子节点对应于所

有可能的传输信号矢量S，j。所有可能的值定义树的最高层，

那么我们可以把位于2(z=1，2，⋯，m)层的任意节点唯一描

述成s?=h吼。⋯s。r，而用屯表示连接节点sm+。和s?的分

枝，并且定义Ⅲ(s?)为节点s7的权值。在构建了这样一个

树结构之后，求解ML解就等同于从所构建的树中搜索一个

权值最小的叶子节点。

如果l按l=m，m一1⋯．，1的顺序取值，结合所采用的

信号星座，那么利用不等式(6)就可以确定每一层f(f=1，

2，⋯，m)节点可能的取值集合I：(s乏。)。

把(6)式左端展开可以得到如下迭代计算公式：

蚧?)_。蚤M。l烀黔M小+卜肌M。l‘
1．，， 、

2

=蚧M⋯)+R叫2 l赤I y；-j互M。Rt,j。卜『
＼ ／

=叩(s鼻，)+月；．。l爵一s，12=1lr(s。M+。)+A。 (7)

对上式我们可以作如下解释：子节点的权值是其父节点

的权值与连接两节点的分枝的权值之和。这样，在我们选择

子节点时，应按照分枝权值从小到大的顺序选取。对应的分

枝权值最小的子节点我们称之为最优子节点，因为在其所在

的层中该子节点的权值最小。因此，如果该子节点的权值大

于搜索半径的平方，那么它所在层的其它节点就可以不必考

虑了，这样可以大大加快搜索速度。这就是SEE枚举[11]的

基本思想。因为在我们提出的算法中要用到，下面结合式

(7)对SEE进行简要的介绍。

在式(7)中，如果我们定义；：=round(；。)，那么；。可以

看成是s。的初始估计，SEE枚举的策略是：

当；，>瓦时，s，按如下顺序取值：

It(s五，)={；f，；f一1，；f+1，；f一2，；f+2，A}

而当；。冬~f时，s，按如下顺序取值：

If(smj+1)={；f，；l+1，；f一1，；f+2，；z一2，A}

最后，球解码算法按照深度优先的准则进行搜索。假设

当前层为z，如果s；的可能取值集合I：(s置，)为空，那么回到上

一层z+1，选取该层的下一个节点，否则就一直往下搜索。如

果搜索到位于第一层的一个叶子节点s?，并且其权值小于当

前的搜索半径的平方c，那么搜索半径更新为1lr(s?)；如果没

有搜索到叶子节点，则增大搜索半径，从根节点开始重新进行

搜索，反复进行，直到得到ML解。为了保证在当前的搜索半

径下得到ML解，搜索半径必须大于等于ML解的欧氏距离。
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4 新的球解码算法WoR-SD

现在我们从另外一个视角来考虑搜索具有最小权值的

叶子节点的问题。假如我们已经知道了最小权值叶子节点

的权值c，显然，只有权值大于c的节点才会往下扩展，扩展

任何权值大于或等于C的非叶子节点只会导致最终得到的

叶子节点的权值大于或等于c，这可以从(7)式中看出。

因此，球解码算法FPB[9]和SEA[11]都有可能扩展一

些不必要扩展的节点，因为它们是根据搜索半径来确定枚举

的节点是否应该扩展的。即使算法会对搜索半径进行自适

应调整，让它逐步变小，但是如果搜索半径曾经大于过c，那

么仍然会有一些权值大于c的节点会被扩展。相反，我们提

出的球解码算法WOR—SD能保证在得到ML解的过程中扩展

最少的节点。另外，在实际的算法中并不需要最优叶子节点

的权值C。

4．1 WOR—SD算法

下面是我们对WOR—SD算法的描述：

1)初始化：令z=rn，m+1=0，皿(s：+。)=0，利用SEE枚

举策略得到符号s。排序的取值集合I。(sI，)，生成最优子节

点s7=h s⋯⋯s。r并且按照(7)式计算其权值叩(s?)。

2)按照SEE枚举策略生成上层节点s7的最优子节点

s工。=[s。s：⋯s。]7，并按照(7)式计算其权值1lr(s工。)。如

果节点s7的父节点s只，没有完全扩展，即在I。(sl。)中还有

候选节点没有被扩展，生成s五。一个新的最优子节点i，，即

I，(s二。)中的下一个候选节点，并计算其权值m(i?)。把新生

成的最优子节点i?，s卫。和它们各自的权值1lr(菩7)，m(sm_。)

加入到节点列表中。

3)从存储在节点列表中的所有最优子节点中选出权值

最小的节点，记为最优节点BN。如果节点BN是一个叶子节

点，那么BN就是我们要求的ML解，WOR．SD算法结束；否则

BN就从最优节点变为要进行扩展的上层节点。返回到2)。

WOR-SD算法中快速确定最优子节点是关键的一步。如

果是实值星座，最优子节点可以通SEE枚举策略[4]确定，它

不需要计算所有子节点的权值。如果是复值星座，我们可以

采用[13]提出的直接SEE枚举策略确定最优子节点。

我们利用下面的示意图对算法进行一些解释。

f0)

图1 WOR．SD算法生成的搜索树(M=3)

根节点的权值为0，记为(0)，搜索从根节点开始。扩展

根节点得到其权值为0．5的最优子节点，记为(0．5)，这时，

最优子节点集合中只有一个节点，即(0．5)，记为{0．5}，节点

(O．5)为最优节点；之后扩展最优节点(0．5)，得到其最优子

节点(1．25)，同时扩展最优节点(0．5)的父节点(0)，得到其

下一个最优子节点(1．2)，这时，最优子节点集合更新为

{1．2，1．25}，其中节点(1．2)的权值最小，为最优节点；扩展

最优节点(1．2)，得到其最优子节点(2．5)，同时扩展最优节

点(1．2)的父节点(0)，得到其下一个最优子节点(1．8)，这

时，最优子节点集合更新为{1．25，2．5，1．8}，其中(1．25)为

最优节点；扩展节点(1．25)得到其最优子节点(1．4)，同时扩

展节点(1．25)的父节点(0．5)得到其下一个最优子节点

(1．5)，此时最优子节点集合为{1．4，1．5，2．5，1．8}，其中节

点(1．4)为最优节点，因为此节点同时又是叶子节点，所以算

法搜索到该节点即得到最优解，即权值最小的叶子节点。

4．2计算复杂度分析

当我们直接比较不同球解码算法的计算复杂度，如比较

算法的浮点运算量时，最大的困难是这种比较和算法的具体

实现有关，因此，我们提出用算法执行中所扩展的节点数V

以及处理每个节点所需要的时间t来评估和比较不同的球解

码算法的复杂度。

因为我们提出的算法总是能保证其扩展的节点数v少

于现有球解码器所扩展的节点数，所以，下面我们主要分析

不同球解码算法中每个节点的处理时间T。

每个节点的处理时间t很难确定，因为它和算法的实现

过程是紧密相关的。文献[9]指出，FPB解码器每次扩展所

需要的运算量是扩展节点所在层次i(i=1⋯．，M)的线性函

数，因此每个节点的处理时间是O(M)。除了要进行上述的

运算外，SEA算法由于要对每一层节点的扩展进行排序而引

入一些固定的开销，但总的来说其每个节点的处理时间VSEA

还是M的线性函数，也是0(M)；而比较而言，WOR-SD算法

会引入更多一些的开销，因为它需要对多层间的节点进行扩

展排序。但是，我们在实现WOR—SD算法时，可以采用一个

堆[14]来存储节点列表。在采用这一高效的数据结构之后，

这些多余的时间开销最多为O(Ml092B)，因此，和])SEA一样，

WOR—SD的每个节点的处理时间依然是M线性的，即为

O(M)，虽然会有一个大的系数。

5仿真结果及分析

在仿真试验中，我们采用M=4根发射和=4根接收根

天线，帧长为100个符号间隔，对应于每帧的信道矩阵H随

机产生，其各个元素皿．，是独立同分布的(i．i．d)，且服从均值

为零、方差为1的复高斯分布，即皿．，～CN(0，1)。每个比特

的平均能量固定为E。=1，加性白高斯噪声(AWGN)n的方差

or2按or2=(ME,／21092(曰))lO一删10调整，其中，E。是星座的
平均信号能量，曰是星座的大小。
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在图1中，我们比较了WOR．SD和SEA在不同信噪比时

扩展节点的平均数与每比特平均接收信噪比(SNR)的关系。

在比较中我们采用了QPSK、16一QAM和64-QAM三种信号星

座，它们分别对应于8、16和24 bits／s／Hz的频谱效率。 [4]

》

赣
《
拉

鹾
辐
霸
*

平均每比特接收信噪比SNR(aa)

图2平均扩展节点数(v)和每比特平均接收

信噪比(SNR)的关系，M=N=4

从图2中我们可以看出，就解码过程中扩展的平均节点

数而言，WOR．SD比SEA要少很多，特别是在低信噪比区域

和采用高频谱效率的星座(如64一QAM)时，而当前SD算法在

这两种情况下的复杂度却相当高。另外，对所有的球形解码

器，其扩展节点数都有一个下限，即v<2M，其中M为发射天

线根数，倍数2是由复系统转换成实系统时，系统维数的变化

因子。

6结束语

本文提出了一种新的快速球形解码算法一WOR·SD。该

算法不需要确定搜索半径参数，同时保证在搜索ML解的过

程中只访问最少的树节点数，因而降低了计算复杂度，特别

是在低信噪比和采用高频谱效率星座的情况下，效果更加明

显，基本上解决了当前SD算法在上述两种情况下计算量相

当大的问题。
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