

Appendix B

See Appendix B Digital Modulation

G B.1 Phase Shift Keying

>B.1.1 Binary Phase Shift Keying

B.1.2 Quadriphase Shift Keying

>B.1.3 M-ary Phase Shift Keying

B.1.4 Differential Phase Shift Keying

G B.2 Quadrature Amplitude Modulation

Digital Modulation Baseband binary data (0,1,0) (P **•** Frequency modulation • We represent a 0 by a low frequency signal • We represent a 1 by a high-frequency signal Baseband binary data (0,1,0). (b) frequency modulation 0.8 0.6 0.4 0.2 amplitude 0 -0.2 -0.4 -0.6 -0.8 -1 2.5 3.5 0 0.5 2 3 1 1.5 time

Digital Modulation

- Digital modulation includes
 - Amplitude Shift Keying
 - C Phase Shift Keying
 - Frequency Shift Keying
 - **G** Quadrature Amplitude Modulation
- Phase Shift Keying (PSK) and Quadrature Amplitude Modulation (QAM) are the popular types of modulation in combined with OFDM.
- In This Appendix, we just consider
 - C Phase Shift Keying
 - >Binary Phase Shift Keying
 - > Quadriphase shift Keying
 - > M-ary Phase Shift Keying
 - > Differential Phase Shift Keying
 - Quadrature Amplitude Modulation

B.1 Phase Shift Keying

- The information is carried by phase of modulated carrier.
- Coherent phase shift keying
 - Coherent means doing with known carrier phase information
- Son-coherent coherent shift keying
 - **○** Non-coherent means doing without carrier phase information.

B.1.1 Binary Phase Shift Keying

The binary phase shift keying the phase of a carrier is switched between two values according to the to possible messages $s_0(t)$ and $s_1(t)$.

$$\begin{cases} s_0(t) = A\cos\left(2\pi f_c t + \theta_0\right) \\ s_1(t) = A\cos\left(2\pi f_c t + \theta_1\right) \end{cases}$$

where θ_0 and θ_1 are constant phase shift. The two phases are usually separated by π radians.

B.1.2 Quadriphase Shift Keying

In binary phase shift keying the phase of a carrier is switched between four values according to the to possible messages $s_{0}(t), s_{1}(t), s_{2}(t) \text{ and } s_{3}(t).$ $s_{0}(t) = A\cos(2\pi f_{c}t + \theta_{0})$ $s_{1}(t) = A\cos(2\pi f_{c}t + \theta_{1})$ $s_{2}(t) = A\cos(2\pi f_{c}t + \theta_{2})$ $s_{3}(t) = A\cos(2\pi f_{c}t + \theta_{3})$

where θ_0 , θ_1 , θ_2 and θ_3 are constant phase shift. The four phases are usually separated by $\frac{\pi}{2}$ radians.

Consider M-ary Phase Shift Keying (MPSK) for which the signal set is

$$s_i(t) = \sqrt{\frac{2E_s}{T_s}} \cos\left(2\pi f_c t + \frac{2\pi (i-1)}{M}\right) \quad 0 \le t \le T_s, \quad i = 1, 2, ..., M$$

where E_s is the signal energy per symbol, T_s is the symbol duration, and f_c is the carrier frequency. This phase of the carrier takes on one of the *M* possible values, namely,

$$\theta_i = 2(i-1)\pi/M$$
, where $i = 1, 2, ..., M$.

The seasier to use trigonometric identities as

$$s_{i}(t) = \sqrt{E_{s}} \left[\cos \frac{2\pi (i-1)}{M} \sqrt{\frac{2}{T_{s}}} \cos 2\pi f_{c}t - \sin \frac{2\pi (i-1)}{M} \sqrt{\frac{2}{T_{s}}} \sin 2\pi f_{c}t \right]$$
$$= \sqrt{E_{s}} \left[\cos \frac{2\pi (i-1)}{M} \phi_{1}(t) - \sin \frac{2\pi (i-1)}{M} \phi_{2}(t) \right] \qquad 0 \le t \le T_{s}, \quad i = 1, 2, ..., M.$$

where it follows that

$$\phi_1(t) = \sqrt{\frac{2}{T_s}} \cos(2\pi f_c t), \qquad 0 \le t \le T_s$$
$$\phi_2(t) = \sqrt{\frac{2}{T_s}} \sin(2\pi f_c t), \qquad 0 \le t \le T_s$$

- That is to say, each $s_i(t)$ may be expanded in terms of the same two orthogonal basis functions $\phi_1(t)$ and $\phi_2(t)$.
- The signal constellation of *M*-ary PSK is therefore twodimensional.

Signal constellation

- The signal-space diagram is circularly symmetric.
- Ge The best decision strategy chooses the signal point in the signal space closest in Euclidean distance to the received data point.
- The Euclidean distance of each of adjacent two points is

$$d = 2\sqrt{E_s} \sin\left(\frac{\pi}{M}\right)$$

• The average probability of symbol error for coherent *M*-ary PSK is

$$p_e \simeq erfc\left(\sqrt{\frac{E_s}{N_0}}\sin\left(\frac{\pi}{M}\right)\right)$$
 ,

where it is assumed that $M \ge 4$.

M-ary PSK
C BPSK

$$p_{e,BPSK} = \frac{1}{2} erfc\left(\sqrt{\gamma}\right)$$

C QPSK with Gray code

$$p_{e,QPSK} = \frac{1}{2} \operatorname{erfc}\left(\sqrt{\gamma}\right)$$

CM-ary PSK

$$p_e \simeq erfc\left(\sqrt{\frac{E_s}{N_0}}\sin\left(\frac{\pi}{M}\right)\right)$$

where

$$\operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} \exp(-z^2) dz$$

B.1.4 Differential Phase Shift Keying

- Two basic operations of DPSK
 - Differential encoding of the input binary wave
 - 🕑 Phase shift keying
- A differentially encoded phase-modulated signal allows noncoherent demodulation that does not require the estimation of the carrier phase.
- **The performance of DPSK is 3dB better than that of PSK.**

B.2 Quadrature Amplitude Modulation

- Quadrature Amplitude Modulation (QAM) is the most popular type of modulation in combined with OFDM.
- Rectangular constellations are especially easy to be implemented as they can be split into independent pulse amplitude modulation (PAM) components for both the inphase and the quadrature part.

B.2 Quadrature Amplitude Modulation

The transmitted *M*-ary QAM signal for symbol *n* can be expressed as

$$s_n(t) = \sqrt{\frac{2E}{T}} a_n \cos(2\pi f_c t) - \sqrt{\frac{2E}{T}} b_n \sin(2\pi f_c t), \quad 0 \le t \le T, \quad n = 0, \pm 1, \pm 2, \dots,$$

where 2*E* is the energy of the signal with the lowest amplitude, a_n and b_n are amplitudes taking on the values

$$a_n, b_n = \pm a, \pm 3a, \dots, \pm (\log_2 M - 1)a.$$

Solution Note that *M* is assumed to be a power of *4*.

The parameter *a* can be related to the average signal energy by $a = \sqrt{\frac{3E_{av}}{2(M-1)}}$.

22

B.2 Quadrature Amplitude Modulation

Signal constellation

C The rectangular constellations of 16-QAM with Gray code.

