

Wireless Comm. Lab.

Appendix B

) **Appendix B Digital Modulation**

A**B.1 Phase Shift Keying**

¾**B.1.1 Binary Phase Shift Keying**

¾**B.1.2 Quadriphase Shift Keying**

¾**B.1.3 M-ary Phase Shift Keying**

¾**B.1.4 Differential Phase Shift Keying**

A**B.2 Quadrature Amplitude Modulation**

Digital Modulation

- كا **Digital modulation includes**
	- A **Amplitude Shift Keying**
	- A **Phase Shift Keying**
	- A **Frequency Shift Keying**
	- A **Quadrature Amplitude Modulation**
-) **Phase Shift Keying (PSK) and Quadrature Amplitude Modulation (QAM) are the popular types of modulation in combined with OFDM.**
- \mathbb{F} **In This Appendix, we just consider**
	- A **Phase Shift Keying**
		- ¾**Binary Phase Shift Keying**
		- ¾**Quadriphase shift Keying**
		- ¾**M-ary Phase Shift Keying**
		- ¾**Differential Phase Shift Keying**
	- A **Quadrature Amplitude Modulation**

B.1 Phase Shift Keying

-) **The information is carried by phase of modulated carrier.**
-) **Coherent phase shift keying**
	- A **Coherent means doing with known carrier phase information**
-) **Non-coherent coherent shift keying**
	- A **Non-coherent means doing without carrier phase information.**

B.1.1 Binary Phase Shift Keying

) **In binary phase shift keying the phase of a carrier is switched** between two values according to the to possible messages $\, s_{0}\left(t\right)$ and $s_1(t)$.

$$
\int_{\mathcal{F}} S_0(t) = A \cos(2\pi f_c t + \theta_0)
$$

$$
S_1(t) = A \cos(2\pi f_c t + \theta_1)
$$

where θ_0 and θ_1 are constant phase shift. The two phases are usually separated by π radians.

B.1.2 Quadriphase Shift Keying

) **In binary phase shift keying the phase of a carrier is switched between four values according to the to possible messages** $s_{0}(t)$, $s_{1}(t)$, $s_{2}(t)$ and $s_{3}(t)$. المحي $s_0(t) = A\cos\left(2\pi f_c t + \theta_0\right)$ $(t) = A\cos\left(2\pi f_c t + \theta_1\right)$ $(t) = A\cos\left(2\pi f_c t + \theta_2\right)$ $\int_{s_3}^{s_2} (t) = A \cos(2\pi f_c t + \theta_2)$
 $s_3(t) = A \cos(2\pi f_c t + \theta_3)$ $1(r)$ - 11000 $(2\pi r)$ $_c$ ^{l} $+$ 0 ₁ 2 (*i*) $-11000(2\pi J_c^{i} + 0.2)$ $\cos(2$ $\cos(2$ *c c* $s_i(t) = A\cos(2\pi f_c t)$ $s_2(t) = A\cos(2\pi f_c t)$ $\pi f_1 + \theta_1$ $\pi f_1 + \theta_2$ $S_0(t) = A \cos(2\pi f_c t + S_1(t)) = A \cos(2\pi f_c t +$ = $\int_{3}^{ } (t) = A \cos (2 \pi f_c t +$

where θ_0 , θ_1 , θ_2 and θ_3 are constant phase shift. The four phases are usually separated by \overline{z}^- radians. π

) **Consider** *M***-ary Phase Shift Keying (MPSK) for which the signal set is**

$$
s_i(t) = \sqrt{\frac{2E_s}{T_s}} \cos \left(2\pi f_c t + \frac{2\pi (i-1)}{M} \right) \quad 0 \le t \le T_s, \quad i = 1, 2, ..., M \quad ,
$$

where E_s is the signal energy per symbol, T_s is the symbol duration, and f_c is the carrier frequency. This phase of the **carrier takes on one of the** *M* **possible values, namely,**

 $\theta_i = 2(i-1)\pi/M$, where $i = 1, 2, ..., M$.

) **It is easier to use trigonometric identities as**

$$
s_i(t) = \sqrt{E_s} \left[\cos \frac{2\pi (i-1)}{M} \sqrt{\frac{2}{T_s}} \cos 2\pi f_c t - \sin \frac{2\pi (i-1)}{M} \sqrt{\frac{2}{T_s}} \sin 2\pi f_c t \right]
$$

= $\sqrt{E_s} \left[\cos \frac{2\pi (i-1)}{M} \phi_1(t) - \sin \frac{2\pi (i-1)}{M} \phi_2(t) \right]$ 0 \le t \le T_s, i = 1, 2, ..., M.

where it follows that

$$
\phi_1(t) = \sqrt{\frac{2}{T_s}} \cos(2\pi f_c t), \qquad 0 \le t \le T_s
$$

$$
\phi_2(t) = \sqrt{\frac{2}{T_s}} \sin(2\pi f_c t), \qquad 0 \le t \le T_s
$$

- \mathcal{F} That is to say, each $s_i(t)$ may be expanded in terms of the ${\bf same\ two\ orthogonal\ basis\ functions\ \ \phi_{_1} (t) \ {\bf and}\ \ \phi_{_2} (t).}$
-) **The signal constellation of** *M***-ary PSK is therefore twodimensional.**

Wireless Comm. Lab. 16 wheres Comm. Easy

) **Signal constellation**

- A **The signal-space diagram is circularly symmetric.**
- A **The best decision strategy chooses the signal point in the signal space closest in Euclidean distance to the received data point.**
- A **The Euclidean distance of each of adjacent two points is**

$$
d=2\sqrt{E_s}\sin\left(\frac{\pi}{M}\right)
$$

A **The average probability of symbol error for coherent** *M***-ary PSK is**

$$
p_e = erfc\left(\sqrt{\frac{E_s}{N_0}}\sin\left(\frac{\pi}{M}\right)\right) ,
$$

where it is assumed that $\ M\geq 4$.

) **M-ary PSK** A**BPSK**

$$
p_{e,BPSK} = \frac{1}{2} erfc\left(\sqrt{\gamma}\right)
$$

A**QPSK with Gray code** $p_{\textit{e,QPSK}} = \frac{1}{2}\textit{erfc}\left(\sqrt{\gamma}\right)$

A**M-ary PSK**

$$
p_e = erfc\left(\sqrt{\frac{E_s}{N_0}}\sin\left(\frac{\pi}{M}\right)\right)
$$

where

$$
erfc(x) = \frac{2}{\sqrt{\pi}} \int_x^{\infty} \exp(-z^2) dz
$$

B.1.4 Differential Phase Shift Keying

-) **Two basic operations of DPSK**
	- A **Differential encoding of the input binary wave**
	- A **Phase shift keying**
- **Example 2 A differentially encoded phase-modulated signal allows noncoherent demodulation that does not require the estimation of the carrier phase.**
-) **The performance of DPSK is 3dB better than that of PSK.**

B.2 Quadrature Amplitude Modulation

-) **Quadrature Amplitude Modulation (QAM) is the most popular type of modulation in combined with OFDM.**
-) **Rectangular constellations are especially easy to be implemented as they can be split into independent pulse amplitude modulation (PAM) components for both the inphase and the quadrature part.**

B.2 Quadrature Amplitude Modulation

) **The transmitted** *M***-ary QAM signal for symbol** *ⁿ* **can be expressed as**

$$
s_n(t) = \sqrt{\frac{2E}{T}} a_n \cos(2\pi f_c t) - \sqrt{\frac{2E}{T}} b_n \sin(2\pi f_c t), \quad 0 \le t \le T, \quad n = 0, \pm 1, \pm 2, \dots,
$$

where 2*E* **is the energy of the signal with the lowest amplitude,** $a_n^{}$ and $\ b_n^{}$ are amplitudes taking on the values

$$
a_n, b_n = \pm a, \pm 3a, ..., \pm (\log_2 M - 1)a.
$$

) **Note that** *M* **is assumed to be a power of** *4***.**

) **The parameter** *a* **can be related to the average signal energy by** $(M-1)$ 32 ($M - 1$ *Eav* $a = 1$ *M*

NCCU Wireless Comm. Lab.22 WHERE'S COMM. Lab

B.2 Quadrature Amplitude Modulation

) **Signal constellation**

A **The rectangular constellations of 16-QAM with Gray code.**

Wireless Comm. Lab.24 WHELE'S COMM. Lab

Wireless Comm. Lab.25 WHERE'S COMM. Lab