3A - Impedance Transformation and Impedance Matching

References

- [1] R. Ludwig, P. Bretchko, "RF circuit design - Theory and applications", 2000 Prentice-Hall.
- [2] D.M. Pozar, "Microwave engineering", 2nd edition, 1998 John-Wiley \& Sons.
- [3] R.E. Collin, "Foundation for microwave engineering", 2nd edition, 1992, McGraw-Hill.

Impedance Transformation

- An impedance transformation network is a two-port network that when connected in series with an impedance Z_{L} at one port, will result in Z_{s} being seen on another port.
- Z_{L} is usually not equal to Z_{s} (otherwise there will be no need for transformation). Z_{s} is known as the image impedance of Z_{L}.
- We immediately notice that the transformation network is a 2-port network.

Impedance Transformation and Matching

Why Impedance Tuning is Needed?

- Maximum power is delivered when load is matched to the Tline (assuming generator is matched).
- Impedance matching on sensitive receiver components (antenna, low-noise amplifier etc.) improves the signal-tonoise ratio of the system.
- Impedance matching in a power distribution network (such as antenna array feed network) will reduce amplitude and phase errors.

Types of Transformation Network

- Single lumped element (either L or C)
- Dual lumped elements (L impedance matching network)
- Triple lumped elements (Pi or T impedance matching network)
- More lumped elements (ladder type)
- Distributed elements (consists of section of Tlines)
- Hybrid - Consists of both Tline and lumped elements

Impedance Transformation Using Lumped Elements

- Lumped components such as surface mounted device (SMD) inductor and capacitor can be easily purchased nowadays.
- SMD capacitors have a range from 0.47 pF to greater than 10000 pF . With tolerance less than $\pm 5 \%$ and operating temperature between $55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.
- SMD inductors have a range from 1.0 nH to greater than 4000 nH . With tolerance from $\pm 5 \%$ to $\pm 10 \%$, operating temperature from $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ and Q factor from a minimum of 15 to greater than 45 .
- The inductors come in a variety of form, from coil-type, thin-film, to spiral inductors mounted in SMD package. Self-resonance frequency ranges from 200 MHz (coil type) for $\mathrm{L}=2200 \mathrm{nH}$ to greater than 5 GHz for L<100nH (thin-film).

Ultra High Frequencies Passive Components (>250MHz)

Medium Frequency Passive Components (up to 250MHz)

Passive Lumped Components for Incorporation into PCB and other Substrates

Interdigital Capacitor

Metal-Insulator-Metal (MIM) Capacitor

Series Single-Loop Spiral Inductor
Series Multi-Loop Spiral Inductor

Shunt Multi-Loop Spiral Inductor

Resistors

Single Lumped Element Transformation Network Cont...

Dual Lumped Elements Transformation Network

$Y_{S}=\frac{1}{Z_{s}}=j B+\frac{1}{R_{L}+j\left(X_{L}+X\right)}$

If $Z_{s}=R_{s}+j X_{s}$ is given, we could solve for X and B by equating the real and imaginary parts:

This configuration is only applicable for $R_{s}>R_{L}$

$$
\begin{aligned}
& X=-X_{L} \pm \sqrt{R_{L}\left(R_{s}-R_{L}\right)+\frac{R_{L}}{R_{S}} X_{S}^{2}} \\
& B=\frac{R_{S}-R_{L}}{R_{S} X_{L}+R_{L} X_{S}+R_{S} X}
\end{aligned}
$$

Dual Elements Transformation Network Cont...

 again we could solve for X and B by equating the real and imaginary parts:

$$
\begin{align*}
& X=X_{s} \pm \sqrt{R_{S}\left(R_{L}-R_{S}\right)+\frac{R_{S}}{R_{L}} X_{L}^{2}} \\
& B=\frac{R_{S}-R_{L}}{R_{L} X_{s}+R_{s} X_{L}-R_{L} X} \tag{1.2}
\end{align*}
$$

This configuration is only applicable for $R_{L}>R_{s}$

Example 1

- Transform $\mathrm{Z}_{\mathrm{L}}=100+\mathrm{j} 80$ to $50+\mathrm{j} 40$ at 410 MHz .

$$
\begin{aligned}
& X=X_{S}+\sqrt{R_{S}\left(R_{L}-R_{S}\right)+\frac{R_{S}}{R_{L}} X_{L}^{2}}=115.498 \quad \mathrm{R}_{\mathrm{L}}>\mathrm{R}_{\mathrm{s}} \\
& B=\frac{R_{S}-R_{L}}{R_{L} X_{S}+R_{S} X_{L}-R_{L} X}=0.014
\end{aligned}
$$

Since X is $+v e$, an inductor can be used to realize it:

$$
L=\frac{X}{2 \pi\left(410 \times 10^{6}\right)}=44.83 n \mathrm{nH}
$$

Since B is +ve , a capacitor can be used to realize it:

$$
C=\frac{B}{2 \pi\left(410 \times 10^{6}\right)}=5.468 p F
$$

Example 1 Cont...

At 410MHz Only!

Exercise 1

- Transform $\mathrm{Z}_{\mathrm{L}}=50+\mathrm{j} 100$ to $300-\mathrm{j} 10$ at 900 MHz using 2 lumped element matching networks.

Example 2

- Repeat Example 1 using Smith chart.

Exercise 2

- Repeat Example 2 using Smith chart.

Q Factor

- The Q Factor of a series or parallel impedance is defined by:

$$
\begin{equation*}
Q_{s}=\frac{|X|}{R} \quad \text { (1.3a) } \quad Q_{p}=\frac{|B|}{G} \tag{1.3b}
\end{equation*}
$$

Series \& Parallel RLC Network

Parameter	Series RLC network	Parallel RLC network
Input impedance	$R_{s}+j \omega L_{s}+\frac{1}{j \omega C_{s}}$	$\left(\frac{1}{R_{P}}+\frac{1}{j \omega L_{P}}+j \omega C_{P}\right)^{-1}$
Resonance frequency	$\omega_{o}=\frac{1}{\sqrt{L_{s} C_{s}}}$	$\omega_{o}=\frac{1}{\sqrt{L_{p} C_{p}}}$
Quality factor, Q at resonance frequency	$Q_{s}=\frac{\omega_{o} L_{s}}{R_{s}}=\frac{1}{\omega_{o} R_{s} C_{s}}$	$Q_{p}=\frac{R_{P}}{\omega_{o} L_{p}}=\omega_{o} R_{P} C_{p}$
Bandwidth BW (note that this is just an approximation)	$\frac{\omega_{o}}{Q_{s}}$	$\frac{\omega_{o}}{Q_{p}}$

Frequency Response of Series \& Parallel RLC Network

Poles and Zeros of Series and Parallel RLC Network

Extra!

For series RLC:
Resonance frequency is
 the frequency where input impedance to a passive RLC network becomes real.
For parallel RLC: $Z(\omega)=\left(\frac{1}{R}+\frac{1}{j \omega L}+j \omega C\right)^{-1}$
1 zero on $\mathrm{j} \omega$ axis $\xrightarrow{=} \underset{ }{R-\omega^{2} R L C+j \omega L}$
2 complex conjugate poles

Resonance Frequency of Higher Order

 Extra! Systems- For a system with more than one L and C, there will be higher order poles and zeros. These will distort the location of the fundamental resonance frequency of the network and introduce higher order resonance frequencies.

Resonance Frequency of Higher Order Extra! Systems Cont...

- Since each resonance frequency is still due to the dominant poles and zeros, the concept of Q factor with regards to 3dB bandwidth can still be applied to higher order network.

Resonance Frequency of Higher Order Extra! Systems Cont...

Impedance Transformation Network as Extra! a Resonating Network

If $Z_{I}=R_{s}$, then the augmented network is actually under resonance during normal operation. The concept of Q factor can be applied. If Z_{I} is complex, the concept of Q factor can still be applied if the X_{s} is small.

Bandwidth of the Matching Network

- Suppose in Example 1 the load Z_{L} is actually given by an inductor in series with a resistor, so that at 410 MHz we obtain $Z_{L}=100+j 80$.

- We input the above schematic in a circuit simulator (PSPICE) and run a frequency sweep (change the frequency of the source V_{s} while measure I \& V) from 100 MHz to 800 MHz .

Bandwidth of the Matching Network Cont...

- Within a range of frequencies near to the operating frequency $f_{o}=410 \mathrm{MHz}, Z_{s}=R_{s}+j X_{s}$ is quite near the desired value. We will call this range of frequency the bandwidth (BW) of the transformation network.

Bandwidth of the Matching Network Cont...

- To examine this closer, we plot Z_{s} in terms of its magnitude and phase.
 Following the theory of series RLC network, we define the 3dB BW as the range of freq. Where $\left|Z_{\mathrm{s}}\right|$ is less than $\sqrt{2} Z_{o}$, where Z_{o} is the magnitude of the impedance at the operating freq. $\mathrm{f}_{\mathrm{o}}=410 \mathrm{MHz}$.
We see that the 'measured' BW is: $\mathrm{BW}=271.76 \mathrm{MHz}$
$\left|Z_{s}\right|$ and $\operatorname{Arg}\left(Z_{s}\right)$ is very close to the pattern of series RLC circuit near operating frequency f_{0}

Bandwidth of the Matching Network Cont...

- Now consider the circuit of Example 1 again. We could compute a quantity known as the Nodal Q factor, Q_{n} as follows:

Bandwidth of the Matching Network Cont...

- We could calculate the BW of the system using the equation

$$
\begin{aligned}
\text { in (1.4): } & B W \cong \frac{f_{o}}{Q_{n}}=\frac{410 \mathrm{MHz}}{1.48}=277 \mathrm{MHz}, ~
\end{aligned}
$$

- TSurprisingly this is quite near the measured value using simulation. Both measured and calculated BW using this method will match even closer if Z_{s} is real, or $X_{s}=0$. This applies to all lumped element transformation network as well (3 elements or more).
- When X_{s} is not 0 , there is an error, the larger $\left|X_{s}\right|$, the greater the error. However this does illustrate that we could in general compare the BW of various transformation network merely by calculating Q_{n}.
- High Q_{n} denotes narrow $B W$, low Q_{n} denotes wide $B W$.

Nodal \mathbf{Q} Factor, \mathbf{Q}_{n}

- Q_{n} for a few favorite transformation networks.

Nodal Q Factor, \mathbf{Q}_{n} Cont...

- The previous slides only illustrate the concept of using nodal Q factor to estimate and compare bandwidth between transformation networks heuristically. A more formal argument and derivation can be found from various materials:
- R. Ludwig, P. Bretchko, "RF circuit design - Theory and applications", 2000, Prentice-Hall.
- J.R. Smith,"Modern communication circuits", 2nd edition 1998, McGraw-Hill.
- EEN3096 (Communication Electronics), year 2000 of MMU.
- Unpublished works of F. Kung, 2003.

Example 3

- Transform the load $Z_{L}=200-\mathrm{j} 40$ to $50+\mathrm{j} 20$ at 2.4 GHz . Find the nodal Q factor and estimate the bandwidth of the circuit. Use Smith chart to aid the design.

$$
L=\frac{108.9}{2 \pi\left(2.4 \times 10^{9}\right)}=7.22 \mathrm{nH}
$$

$$
C=\frac{0.008}{2 \pi\left(2.4 \times 10^{9}\right)}=0.53 p F
$$

$$
Q_{n}=\frac{89.23}{50.58}=1.764
$$

$$
B W=\frac{2.4 \mathrm{GHz}}{1.764}=1.36 \mathrm{GHz}
$$

$$
z_{\boxed{7.50 .58}}
$$

Constant \mathbf{Q}_{n} Circles

- Q_{n} depends on the point location on the Smith chart. We could joint all points on the Smith chart giving a similar Q_{n} to form a curve or locus. It happens that this locus is a circle, known as Constant Q_{n} circles.
- The center and radius for the circles can be derived as follows.
- From section Section 2.2 on Smith chart:
$r+j x=\frac{1+U+j V}{1-U-j V}=\frac{1-U^{2}-V^{2}}{(1-U)^{2}+V^{2}}+j \frac{2 V}{(1-U)^{2}+V^{2}} \quad \quad \Gamma_{\text {center }}=0 \mp j \frac{1}{Q_{n}}$
$Q_{n}=\frac{|x|}{r}=\frac{2|V|}{1-U^{2}-V^{2}} \rightarrow U^{2}+\left(V \pm \frac{1}{Q_{n}}\right)^{2}=1+\frac{1}{Q_{n}^{2}} \quad$ Radius $=\sqrt{1+\frac{1}{Q_{n}^{2}}}$

Constant Q_{n} Circles Cont...

Q_{n} _Radius $1 / Q_{n}$
$\begin{array}{lll}0.5 & 2.2360 & 2.000\end{array}$
$\begin{array}{lll}1.0 & 1.4142 & 1.000\end{array}$
$\begin{array}{lll}2.0 & 1.1180 & 0.500\end{array}$
$\begin{array}{lll}3.0 & 1.0541 & 0.333\end{array}$
$\begin{array}{lll}5.0 & 1.0198 & 0.200\end{array}$

Limitation of 2 Lumped Elements Network

- By now it is obvious of the limitation of the 2 elements network. For instance in Example 3 there are only two ways to transform $Z_{L}=200-j 40$ to $Z_{s}=50+j 20$.
- Therefore we cannot control the nodal Q factor of 2 elements network, it is determined by the values of Z_{L} and Z_{s}.
- Using an extra element, we have extra degree of freedom and we can control the value of Q_{n} in addition to performing impedance transformation/matching. This is the advantage of using the T or Pi networks.

Three or More Lumped Elements Transformation Network

- For more than 3 lumped elements, analytical method such as shown in previous slides is very cumbersome to apply.
- It is more easier to perform 3 elements transformation network design with the aid of Smith Chart.
- As oppose to 2 elements network, 3 or more elements network do not suffer from blind spot. It can transform any passive load Z_{L} to any required impedance value.

Example 4

Repeat Example 3 using 3 elements transformation network, either T or Pi , with the aid of Smith chart. It is required that Q_{n} be equal to 3 . $\left(Z_{L}=200-j 40, Z_{s}=50+j 20\right)$.

$L_{1}=19.5 \mathrm{nH}$
$C_{1}=0.55 \mathrm{pF}$
$L_{2}=11.58 \mathrm{nH}$

Example 5

- Repeat Example 4 using 3 elements transformation network, either T or Pi , with the aid of Smith chart. It is required that Q_{n} be equal to 5 . $\left(Z_{L}=200-j 40, Z_{s}=50+j 20\right)$.

$L_{1}=32.4 \mathrm{nH}$
$C_{1}=0.387 \mathrm{pF}$
$L_{2}=17.3 \mathrm{nH}$

\mathbf{Z}_{s} Versus f from Simulation with PSPICE

Both circuits from Example 4 and 5 are fed into PSPICE. AC simulation is run from 1.8 GHz to 2.8 GHz and the results are compared. It is seen that the T network with higher nodal Q factor has narrower BW, characterized by more rapid deviation from $\mathrm{f}_{0}=2.4 \mathrm{GHz}$.

Exercise 3

- Repeat Example 5 using 3 elements T transformation network, with the aid of Smith chart. It is required that Q_{n} be equal to 1. $\left(Z_{L}=200-j 40, Z_{s}=50+j 20\right)$. Can you synthesize the T network ? Suggest a solution to this.

Exercise 4

- Repeat Example 5 using 3 elements Pi transformation network, with the aid of Smith chart. It is required that Q_{n} be equal to 3. $\left(Z_{L}=200-j 40, Z_{s}=50+j 20\right)$. Can this impedance transformation be realized? Discuss the result.

Pros \& Cons of Lumped Element Network

- Lumped element network is compact, small in size.
- Suitable for use up to frequency of 2.5 GHz .
- Not every values of inductance and capacitance are available.
- Stability, value changes with temperature.
- Tolerance of components.
- Difficult to tune.
- Higher cost.

Distributed Transformation Network

- Single Stub transformation network.

- jB can be implemented using a Tline with open/short circuit at one end. Can also use lumped elements such as SMD capacitors. In this case the network is known as hybrid network.
- No blind spot.

Example 6

- Transform the load $\mathrm{Z}_{\mathrm{L}}=200-\mathrm{j} 40$ to $50+\mathrm{j} 20$ at 2.4 GHz . Find the nodal Q factor and estimate the bandwidth of the circuit. Use Smith chart to aid the design. Synthesize the circuit.

$Z^{\prime}=R^{\prime}+j X^{\prime}$
$Y^{\prime}=G^{\prime}+j B^{\prime}$
$\theta=\beta l=1.013$
$B=-0.0356$

Example 6 Cont...

- Use a microstrip line to implement the circuit, $Z_{c}=500 \mathrm{hm}$. Dielectric constant $=4.7$, and $\mathrm{d}=1.6 \mathrm{~mm}$.
- Step 1 - Synthesize Tline.
- From Example 5, Section 3.0, we see that the required W must be 2.88 mm .

$$
\begin{aligned}
& \varepsilon_{e f f}=3.55 \\
& \beta=\omega \sqrt{\varepsilon_{o} \varepsilon_{e f f} \mu} \\
& =2 \pi\left(2.4 \times 10^{9}\right) \sqrt{3.55 \varepsilon_{o} \mu_{o}}=94.77 \\
& l=\frac{\theta}{\beta}=\frac{1.013}{94.77}=0.011 \mathrm{~m}=1.1 \mathrm{~cm}
\end{aligned}
$$

Example 6 Cont...

- Step 2 - Synthesize jB_{1}.
- We can use an inductor for B_{1} :

$$
L=\frac{1}{2 \pi\left(2.4 \times 10^{9}\right) \cdot 0.0356}=1.863 \mathrm{nH}
$$

- Or we can use another short circuit Tline to generate B_{1} :

$$
\begin{aligned}
& Z_{i n}(l)=j Z_{c} \tan (\beta l)=\frac{1}{-j B}=j\left(\frac{1}{B}\right) \\
& l=\frac{1}{\beta} \tan ^{-1}\left(\frac{1}{Z_{c} B}\right)=\frac{1}{94.77} \tan ^{-1}\left(\frac{1}{0.0356 \times 50}\right)=0.0054 \mathrm{~m}
\end{aligned}
$$

Example 6 Cont...

- Thus the final circuit...

Double-Stub Distributed Network

- The single-stub network suffers from the disadvantage of requiring a variable length of Tline between the load and the stub. This may not be a problem for fixed transformation network, but would pose some difficulty if an adjustable tuning network is desired.
- To overcome this disadvantage a double-stub transformation network is used.

Double-Stub Distributed Network

 Cont...

Double-stub Matching Cont...

- Double-stub matching using waveguide:

Quarter Wave Transformer

- A quarter wave transformer is a simple and useful circuit for matching a real load impedance to a transmission line. An additional feature is that it can be extended to multisection design for broader bandwidth.
- Consider a terminated lossless Tline again, using (1.7) of "2 - Microwave Network Analysis" and letting $l=\frac{\lambda}{4}$:

$$
\begin{align*}
& l=\frac{\lambda}{4} \longmapsto \beta l=\frac{2 \pi}{\lambda} \cdot \frac{\lambda}{4}=\frac{\pi}{2} \\
& Z_{\text {in }}(l)=Z_{1} \frac{Z_{L}+j Z_{1} \tan \left(\frac{\pi}{2}\right)}{Z_{1}+j Z_{L} \tan \left(\frac{\pi}{2}\right)}=\frac{Z_{1}^{2}}{Z_{L}} \tag{1.6}\\
& \Rightarrow Z_{\text {in }}(l)=\frac{Z_{1}^{2}}{Z_{L}} \quad(1.6) \quad \mathbf{Z}_{\text {in }} \quad \longrightarrow \\
& z_{l}
\end{align*}
$$

Example 7

- Design a quarter wave transformer to transform a 200Ω load into 50Ω at 2.4 GHz using a microstrip line constructed on a dielectric with dielectric constant 4.2 and thickness 1.6 mm .
$Z_{1}=\sqrt{Z_{c} R_{L}}=\sqrt{50 \times 200}=100$
Using the microstrip design equations of "1-Advance Transmission Line":

$$
\begin{aligned}
& \frac{w}{h}=0.45 \\
& w=0.45 \times 1.6=0.72 \mathrm{~mm}
\end{aligned}
$$

Example 7 Cont...

$\varepsilon_{e}=2.91$
$v_{p}=\frac{1}{\sqrt{\varepsilon_{e} \varepsilon_{o} \mu_{o}}}=1.75743 \times 10^{8}$
$\beta=\frac{\omega}{v_{p}}=85.81$
$\beta l=\frac{\pi}{2} \quad$ For quarter wavelength

$l=\frac{\pi}{2 \beta}=0.0183=10.8 \mathrm{~mm}$

Quarter Wave Transformer Cont...

- One drawback of the quarter wave transformer is that it can only match a real load impedance, a complex load impedance can always be transformed to a real impedance.
- At the operating frequency f_{0}, the electrical length of the matching section is $\lambda_{o} / 4$. But at other frequencies the length is different, so a perfect match is no longer obtained. So the quarter wave transformer has a limited bandwidth, like other transformation methods.
- Writing $\mathrm{Z}_{\text {in }}$ as: $t=\tan \theta, \quad \theta=\beta l$

$$
\begin{equation*}
Z_{\text {in }}=Z_{1} \frac{Z_{L}+j Z_{1} t}{Z_{1}+j Z_{L} t} \tag{1.7}
\end{equation*}
$$

Extra! BW of Quarter Wave Transformer

- Using (1.6) and (1.7): $\Gamma=\frac{Z_{\text {in }}-Z_{c}}{Z_{i n}+Z_{c}}=\frac{Z_{L}-Z_{c}}{Z_{L}+Z_{c}+j 2 t \sqrt{Z_{c} Z_{L}}}$

$$
|\Gamma|=\frac{\left|Z_{L}-Z_{c}\right|}{\left[\left(Z_{L}+Z_{c}\right)^{2}+4 t^{2} Z_{o} Z_{L}\right]^{1 / 2}}
$$

$$
\begin{align*}
& =\frac{1}{\left\{\left(\left(Z_{L}+Z_{c}\right) /\left(Z_{L}-Z_{c}\right)\right)^{2}+\left[4 t^{2} Z_{c} Z\right.\right.} \tag{2}\\
& =\frac{1}{\left\{1+\left[4 Z_{c} Z_{L} /\left(Z_{L}-Z_{c}\right)^{2}\right] \sec ^{2} \theta\right\}^{1 / 2}}
\end{align*}
$$

- For frequency near $f_{0}, I \cong \lambda_{0} / 4, \sec ^{2} \theta \gg 1$, and this simplifies to:

$$
\begin{align*}
& \text { Ies to: } \tag{1.8b}\\
& |\Gamma|=\rho \cong \frac{\left|Z_{L}-Z_{c}\right|}{2 \sqrt{Z_{c} Z_{L}}}|\cos \theta|
\end{align*}
$$

BW of Quarter Wave Transformer Cont...

Extra!

BW of Quarter Wave Transformer Cont...

Extra!

- If we set a maximum value, ρ_{m}, of the reflection coefficient magnitude that can be tolerated, putting this into (1.8a) and solve for θ_{m} :

$$
\cos \theta_{m}=\frac{\rho_{m}}{\sqrt{1-\rho_{m}^{2}}} \cdot \frac{2 \sqrt{Z_{c} Z_{L}}}{\left|Z_{L}-Z_{c}\right|}
$$

- Assuming TEM or quasi-TEM mode:
- And the bandwidth is given by:

$$
\theta_{m}=\beta l=\frac{2 \pi f_{m}}{v_{p}} \frac{v_{p}}{4 f_{o}}=\frac{\pi f_{m}}{2 f_{o}}
$$

$$
\begin{align*}
& \Delta f=2\left|f_{o}-f_{m}\right| \\
& =2 f_{o}-\frac{4}{\pi} \cos ^{-1}\left[\frac{\rho_{m}}{\sqrt{1-\rho_{m}^{2}}} \cdot \frac{2 \sqrt{Z_{L} Z_{c}}}{\left|Z_{L}-Z_{c}\right|}\right] \tag{1.8c}
\end{align*}
$$

$$
\Rightarrow f_{m}=\frac{2 \theta_{m} f_{o}}{\pi}
$$

Final Note on Quarter Wave Transformer

- In the previous analysis the reactance associated with the discontinuities must be taken into account.
- Proper compensation technique must be used.

Example 8

- Design a single-section quarter wave transformer to match a 10 Ohm load to a 500 hm Tline, at $\mathrm{f}_{\mathrm{o}}=2.4 \mathrm{GHz}$. Determine the bandwidth for which VSWR<1.3. Use the microstrip line of Example 6 to realize it.

$$
\begin{aligned}
& Z_{1}=\sqrt{50.10}=22.361 \\
& \rho_{m}=\frac{V S W R-1}{V S W R+1}=0.13 \quad \text { From example } 6
\end{aligned} \quad \begin{aligned}
& \left.\quad \downarrow\right|_{2.4 \mathrm{GHz}}=94.77 \longrightarrow \frac{\left.\lambda\right|_{2.4 \mathrm{GHz}}=2 \pi / \beta=6.6 \mathrm{~cm}}{4}=1.7 \mathrm{~cm} \\
& {\left[2-\frac{4}{\pi} \cdot \operatorname{acos}\left[\frac{\rho \mathrm{~m}}{\sqrt{1-\rho \mathrm{m}^{2}}} \cdot \frac{(2 \cdot \sqrt{50 \cdot 10})}{|10-50|}\right]\right] \cdot \mathrm{fo}=4.511 \times 10^{8} \mathrm{I} \square \Delta f=451.2 \mathrm{MHz}}
\end{aligned}
$$

Pros \& Cons of Distributed Network

- Easy to fabricate and incorporate into microwave circuit. Utilize the PCB itself.
- Cheap and stable, good tolerance if mechanical tolerance is properly controlled.
- Easier to tune than lumped element network.
- Modern manufacturing facilities use LASER to trim the transmission line dimension during tuning.
- At low frequency, the length of the Tline can be unwieldy large.

Increasing Bandwidth of Distributing Matching Network

- For applications requiring more bandwidth than a single quarter wave section can provide, multi-section transformers can be used.

Z_{n} must increase or decrease monotonically Z_{L} must be real.
\rightarrow The theory of multisection transformer
$Z_{L} \quad$ is beyond the time frame of this course. Interested students please refer to Section 5.10-12 of reference [3].
- We can synthesize any desired reflection coefficient response as a function of frequency, by properly choosing Γ_{n} and using enough sections.

Binomial and Chebyshev Transformers
 Extra!

Binomial Transformer

- impedance of consecutive $1 / 4$ wave lines are proportional to binomial coefficients
- gives maximally flat passband characteristic

Chebyshev Transformer

- wider bandwidth than Binomial Transformer for the same number of $1 / 4$ wave sections
- ripple over passband

Tapered Transition

- characteristic impedance varies continuously in a smooth fashion
- taper length of 0.5-1.5 wavelength required

Question 1 (16 marks)

- Consider the parallel RC network below. Design a 2-element lumped network that will transform the RC network into 50Ω at 900 MHz .
- Also determine the nodal Q factor and estimate the operating bandwidth of the transformation network.

Question 2 (14 marks)

- A T network is shown below. Derive, in terms of ω, L and C:
- (a) the ABCD matrix of the network.
- (b) the S matrix of the network, take $Z_{01}=Z_{02}=Z_{0}$ to be 50 .

射频和天线设计培训课程推荐

易迪拓培训（www．edatop．com）由数名来自于研发第一线的资深工程师发起成立，致力并专注于微波，射频，天线设计研发人才的培养；我们于 2006 年整合合并微波 EDA 网（www．mweda．com），现已发展成为国内最大的微波射频和天线设计人才培养基地，成功推出多套微波射频以及天线设计经典培训课程和 ADS，HFSS 等专业软件使用培训课程，广受客户好评；并先后与人民邮电出版社，电子工业出版社合作出版了多本专业图书，帮助数万名工程师提升了专业技术能力。客户遍布中兴通讯，研通高频，埃威航电，国人通信等多家国内知名公司，以及台湾工业技术研究院，永业科技，全一电子等多家台湾地区企业。

易迪拓培训课程列表：http：／／www．edatop．com／peixun／rfe／129．html

射频工程师养成培训课程套装

该套装精选了射频专业基㖄培训课程，射频仿真设计培训课程和射频电路测量培训课程三个类别共 30 门视频堷训课程和 3 本图书教材；旨在引领学员全面学习一个射频工程师需要熟悉，理解和掌握的专业知识和研发设计能力。通过套装的学习，能够让学员完全达到和胜任一个合格的射频工程师的要求…

课程网址：http：／／www．edatop．com／peixun／rfe／110．html

ADS 学习培训课程套装

该套装是迄今国内最全面，最权威的 ADS 培训教程，共包含 10 门 ADS学习堷训课程。课程是由具有多年 ADS 使用经验的微波射频与通信系统设计领域资深专家讲解，并多结合设计实例，由浅入深，详细而又全面地讲解了 ADS 在微波射频电路设计，通信系统设计和电磁仿真设计方面的内容。能让您在最短的时间内学会使用 ADS，迅速提升个人技术能力，把 ADS 真正应用到实际研发工作中去，成为 ADS 设计专家．．．

课程网址：http：／／www．edatop．com／peixun／ads／13．html

＋4．4i4－

HFSS 学习培训课程套装

该套课程套装包含了本站全部 HFSS 堷训课程，是迄今国内最全面，最专业的 HFSS 培训教程套装，可以帮助您从零开始，全面深入学习HFSS的各项功能和在多个方面的工程应用。购买套装，更可超值赠送 3 个月免费学习答疑，随时解答您学习过程中遇到的㽪手问题，让您的 HFSS学习更加轻松顺畅…

课程网址：http：／／www．edatop．com／peixun／hfss／11．html

CST 学习培训课程套装

该培训套装由易迪拓培训联合微波 EDA 网共同推出，是最全面，系统，专业的 CST 微波工作室堷训课程套装，所有课程都由经验丰富的专家授课，视频教学，可以帮助您从零开始，全面系统地学习 CST 微波工作的各项功能及其在微波射频，天线设计等领域的设计应用。且购买该套装，还可超值赠送 3 个月免费学习答疑…

课程网址：http：／／www．edatop．com／peixun／cst／24．html

HFSS 天线设计培训课程套装

套装包含 6 门视频课程和 1 本图书，课程从基础讲起，内容由浅入深，理论介绍和实际操作讲解相结合，全面系统的讲解了 HFSS 天线设计的全过程。是国内最全面，最专业的 HFSS 天线设计课程，可以帮助您快速学习掌握如何使用 HFSS 设计天线，让天线设计不再难…

课程网址：http：／／www．edatop．com／peixun／hfss／122．html

13．56MHz NFC／RFID 线圈天线设计培训课程套装

套装包含 4 门视频培训课程，堷训将 13.56 MHz 线圈天线设计原理和仿真设计实践相结合，全面系统地讲解了 13.56 MHz 线圈天线的工作原理，设计方法，设计考量以及使用 HFSS 和 CST 仿真分析线圈天线的具体操作，同时还介绍了 13.56 MHz 线圈天线匹配电路的设计和调试。通过该套课程的学习，可以帮助您快速学习掌握 13.56 MHz 线圈天线及其匹配电路的原理，设计和调试…

详情浏览：http：／／www．edatop．com／peixun／antenna／116．html

我们的课程优势：
※成立于2004年， 10 多年丰富的行业经验，
※ 一直致力并专注于微波射频和天线设计工程师的培养，更了解该行业对人才的要求
※ 经验丰富的一线资深工程师讲授，结合实际工程案例，直观，实用，易学

联系我们：

※ 易迪拓培训官网：http：／／www．edatop．com
※ 微波 EDA 网：http：／／www．mweda．com
※ 官方淘宝店：http：／／shop36920890．taobao．com

