
Data Transmission Lines
and Their Characteristics

Overview
This application note discusses the general characteristics of
transmission lines and their derivations. Here, using a trans-
mission line model, the important parameters of character-
istics impedance and propagation delay are developed in
terms of their physical and electrical parameters. This appli-
cation note is a revised reprint of section two of the Fairchild
Line Driver and Receiver Handbook. This application note,
the first of a three part series (see AN-807 and AN-808),
covers the following topics:

• Transmission Line Model

• Input Impedance of a Transmission Line

• Phase Shift and Propagation Velocity for the Transmis-
sion Line

• Summary — Characteristics Impedance and Propagation
Delay

Introduction
A data transmission line is composed of two or more con-
ductors transmitting electrical signals from one location to
another. A parallel transmission line is shown in Figure 1. To
show how the signals (voltages and currents) on the line
relate to as yet undefined parameters, a transmission line
model is needed.

Transmission Line Model
Because the wires A and B could not be ideal conductors,
they therefore must have some finite resistance. This
resistance/conductivity is determined by length and
cross-sectional area. Any line model, then, should possess
some series resistance representing the finite conductivity of
the wires. It is convenient to establish this resistance as a
per-unit-length parameter.

Similarly, the insulating medium separating the two conduc-
tors could not be a perfect insulator because some small
leakage current is always present. These currents and di-
electric losses can be represented as a shunt conductance
per unit length of line. To facilitate development of later
equations, conductance is the chosen term instead of resis-
tance.

If the voltage between conductors A and B is not variable
with time, any voltage present indicates a static electric field

between the conductors. From electrostatic theory it is
known that the voltage V produced by a static electric field E
is given by

(1)

This static electric field between the wires can only exist if
there are free charges of equal and opposite polarity on both
wires as described by Coulomb’s law.

(2)

where E is the electric field in volts per meter, q is the charge
in Coulombs, e is the dielectric constant, and r is the distance
in meters. These free charges, accompanied by a voltage,
represent a capacitance (C = q/V); so the line model must
include a shunt capacitive component. Since total capaci-
tance is dependent upon line length, it should be expressed
in a capacitance per-unit-length value.

It is known that a current flow in the conductors induces a
magnetic field or flux. This is determined by either Ampere’s
law

(3)

or the Biot-Savart law

(4)

where r = radius vector (meters)
, = length vector (meters)

I = current (amps)

B = magnetic flux density (Webers per meter)

H = magnetic field (amps per meter)

µ = permeability
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Transmission Line Model (Continued)

If the magnetic flux (φ) linking the two wires is variable with
time, then according to Faraday’s law

(5)

A small line section can exhibit a voltage drop — in addition
to a resistive drop — due to the changing magnetic flux (φ)
within the section loop. This voltage drop is the result of an
inductance given as

(6)

Therefore, the line model should include a series inductance
per-unit-length term. In summary, it is determined that the
model of a transmission line section can be represented by
two series terms of resistance and inductance and two shunt
terms of capacitance and conductance.

From a circuit analysis point of view, the terms can be
considered in any order, since an equivalent circuit is being
generated. Figure 2 shows three possible arrangements of
circuit elements.

For consistency, the circuit shown in Figure 2 will be used
throughout the remainder of this application note. Figure 3
shows how a transmission line model is constructed by
series connecting the short sections into a ladder network.

Before examining the pertinent properties of the model,
some comments are necessary on applicability and limita-
tions. A real transmission line does not consist of an infinite
number of small lumped sections — rather, it is a distributed

network. For the lumped model to accurately represent the
transmission line (see Figure 3 ), the section length must be
quite small in comparison with the shortest wavelengths
(highest frequencies) to be used in analysis of the model.
Within these limits, as differentials are taken, the section
length will approach zero and the model should exhibit the
same (or at least very similar) characteristics as the actual
distributed parameter transmission line. The model in Figure

01133601

I = CURRENT FLOW

, = LINE LENGTH

E = ELECTRIC FIELD

H = MAGNETIC FIELD

FIGURE 1. Infinite Length Parallel Wire Transmission Line
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FIGURE 2. Circuit Elements
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Transmission Line Model (Continued)

3 does not include second order terms such as the increase
in resistance due to skin effect or loss terms resulting from
non-linear dielectrics. These terms and effects are discussed
in the references rather than in this application note, since
they tend to obscure the basic principles under consider-
ation. For the present, assume that the signals applied to the
line have their minimum wavelengths a great deal longer
than the section length of the model and ignore the second
order terms.

Input Impedance of a
Transmission Line
The purpose of this section is to determine the input imped-
ance of a transmission line; i.e., what amount of input current

IINis needed to produce a given voltage VIN across the line
as a function of the LRCG parameters in the transmission
line, (see Figure 4 ).

Combining the series terms lR and lL together simplifies
calculation of the series impedance (Zs) as follows

Zs = ,(R + jωL) (7)

Likewise, combining lC and lG produces a parallel imped-
ance Zp represented by

(8)

Since it is assumed that the line model in Figure 5 is infinite
in length, the impedance looking into any cross section
should be equal, that is Z1 = Z2 = Z3, etc. So Figure 5 can be
simplified to the network in Figure 5 where Z0 is the charac-
teristic impedance of the line and Zin must equal this imped-
ance (Zin = Z0). From Figure 5,

(9)

01133605

FIGURE 3. A Transmission Line Model Composed of Short, Series Connected Sections
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FIGURE 4. Series Connected Sections to Approximate a Distributed Transmission Line
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FIGURE 5. Cascaded Network to Model Transmission Line
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Input Impedance of a
Transmission Line (Continued)

Multiplying through both sides by (Z0 + Zp) and collecting
terms yields

Z02 − ZsZ0 − ZsZp = 0 (10)

which may be solved by using the quadratic formula to give

(11)

Substituting in the definition of Zs and Zp from Equation (7)
and Equation (8), Equation (11) now appears as

(12)

Now, as the section length is reduced, all the parameters
( lR, lL, lG, and lC) decrease in the same proportion. This is
because the per-unit-length line parameters R, L, G, and C
are constants for a given line. By sufficiently reducing ,, the
terms in Equation (12) which contain l as multipliers will
become negligible when compared to the last term

which remains constant during the reduction process. Thus
Equation (12) can be rewritten as

(13)

particularly when the section length , is taken to be very
small. Similarly, if a high enough frequency is assumed,

such that the ωL and ωC terms are much larger respectively
than the R and G terms, Zs = jω,L and Zp = 1/jω, C can be
used to arrive at a lossless line value of

(14)

In the lower frequency range,

the R and G terms dominate the impedance giving

(15)

A typical twisted pair would show an impedance versus
applied frequency curve similar to that shown in Figure 6.
The Z0 becomes constant above 100 kHz, since this is the
region where the ωL and ωC terms dominate and Equation
(13) reduces to Equation (14). This region above 100 kHz is
of primary interest, since the frequency spectrum of the fast
rise/fall time pulses sent over the transmission line have a

fundamental frequency in the 1-to-50 MHz area with har-
monics extending upward in frequency. The expressions for
Z0 in Equation (13), Equation (14) and Equation (15) do not
contain any reference to line length, so using Equation (14)
as the normal characteristic impedance expression, allows
the line to be replaced with a resistor of R0 = Z0 Ω neglecting
any small reactance. This is true when calculating the initial
voltage step produced on the line in response to an input
current step, or an initial current step in response to an input
voltage step.

Figure 7 shows a 2V input step into a 96Ω transmission line
(top trace) and the input current required for line lengths of
150, 300, 450, 1050, 2100, and 3750 feet, respectively
(second set of traces). The lower traces show the output
voltage waveform for the various line lengths. As can be
seen, maximum input current is the same for all the different
line lengths, and depends only upon the input voltage and
the characteristic resistance of the line. Since R0 = 96Ω and
VIN = 2V, then IIN = VIN/R0 . 20 mA as shown by Figure 7.

A popular method for estimating the input current into a line
in response to an input voltage is the formula

C(dv/dt) = i

where C is the total capacitance of the line (C = C per foot x
length of line) and dv/dt is the slew rate of the input signal. If
the 3750-foot line, with a characteristic capacitance per unit
length of 16 pF/ft is used, the formula Ctotal = (C x ,) would
yield a total lumped capacitance of 0.06 µF. Using this C(dv/
dt) = i formula with (dv/dt = 2V/10 ns) as in the scope photo
would yield

This is clearly not the case! Actually, since the line imped-
ance is approximately 100Ω, 20 mA are required to produce
2V across the line. If a signal with a rise time long enough to
encompass the time delay of the line is used (tr @τ), then
the C(dv/dt) = i formula will yield a resonable estimate of the
peak input current required. In the example, if the dv/dt is
2V/20 µs (tr = 20 µs > τ = 6 µs), then i = 2V/20 µs x 0.06 µF
= 6 mA, which is verified by Figure 8.

Figure 8 shows that C(dv/dt) = i only when the rise time is
greater than the time delay of the line (tr @ τ). The maximum
input current requirement will be with a fast rise time step,

01133609

FIGURE 6. Characteristics Impedance
versus Frequency
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Input Impedance of a
Transmission Line (Continued)

but the line is essentially resistive, so VIN/IIN = R0 = Z0 will
give the actual drive current needed. These effects will be
discussed later in Application Note 807.

Phase Shift and Propagation
Velocity for the Transmission Line
There will probably be some phase shift and loss of signal v2

with respect to v1 because of the reactive and resistive parts

of Zs and Zp in the model (Figure 5). Each small section of
the line (,) will contribute to the total phase shift and ampli-
tude reduction if a number of sections are cascaded as in
Figure 5. So, it is important to determine the phase shift and
signal amplitude loss contributed by each section.

01133610
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, = 150, 300, 450, 1050, 2100, 3750 ft.

24 AWG TWISTED PAIR R0 . 96Ω

FIGURE 7. Input Current Into a 96Ω Transmission Line for a 2V Input Step for Various LIne Lengths

01133612

01133613

R0 = 96Ω, δ = 1.6 ns/ft.

FIGURE 8. Input Current Into Line with Controlled Rise Time tr > 2π
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Phase Shift and Propagation
Velocity for the Transmission Line
(Continued)

Using Figure 5, v2 can be expressed as

(16)

or

(17)

and further simplification yields

(18)

Remember that a per-unit-length constant, normally called γ
is needed. This shows the reduction in amplitude and the
change in the phase per unit length of the sections.

γ, = α, = jβ, (19)

Since

v2 = ν1
−γ, = ν1

−α, + ν,
−jβ, (20)

where v1
α, is a signal attenuation and v1 −jβ, is the change

in phase from v1 to v2,

(21)

Thus, taking the natural log of both sides of Equation (18)

(22)

Substituting Equation (13) for Z0 and Ypfor ,/Zp

(23)

Now when allowing the section length , to become small,

Yp = ,(G + jωC)

will be very small compared to the constant

since the expression for Z0 does not contain a reference to
the section length ,. So Equation (23) can be rewritten as

(24)

By using the series expansion for the natural log:

(25)

and keeping in mind the

value will be much less than one because the section length
is allowed to become very small, the higher order expansion
terms can be neglected, thereby reducing Equation (24) to

(26)

If Equation (26) is divided by the section length,

(27)

the propagation constant per unit length is obtained. If the
resistive components R and G are further neglected by
assuming the line is reasonably short, Equation (26) can be
reduced to read

(28)

Equation (28) shows that the lossless transmission line has
one very important property: signals introduced on the line
have a constant phase shift per unit length with no change in
amplitude. This progressive phase shift along the line actu-
ally represents a wave traveling down the line with a velocity
equal to the inverse of the phase shift per section. This
velocity is

(29)

for lossless lines. Because the LRCG parameters of the line
are independent of frequency except for those upper fre-
quency constraints previously discussed, the signal velocity
given by Equation (29) is also independent of signal fre-
quency. In the practical world with long lines, there is in fact
a frequency dependence of the signal velocity. This causes
sharp edged pulses to become rounded and distorted. More
on these long line effects will be discussed in Application
Note 807.

Summary—Characteristic
Impedance and Propagation Delay
Every transmission line has a characteristic impedance Z0,
and both voltage and current at any point on the line are
related by the formula

In terms of the per-unit-length parameters LRCG,

Since R ! jωL and G ! jωC for most lines at frequencies
above 100 kHz, the characteristic impedance is best ap-
proximated by the lossless line expression
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Summary—Characteristic
Impedance and Propagation Delay
(Continued)

The propagation constant, γ, shows that signals exhibit an
amplitude loss and phase shift with the latter actually a
velocity of propagation of the signal down the line. For
lossless lines, where the attenuation is zero, the phase shift
per unit length is

This really represents a signal traveling down the line with a
velocity

This velocity is independent of the applied frequency.

The larger the LC product of the line, the slower the signal
will propagate down the line. A time delay per unit length can
also be defined as the inverse of ν

(30)

and a total propagation delay for a line of length , as

(31)

For a more detailed discussion of characteristic impedances
and propagation constants, the reader is referred to the
references below.
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