Design of Class E Amplifier With Nonlinear and Linear Shunt Capacitances for Any Duty Cycle

Arturo Mediano, Senior Member, IEEE, Pilar Molina-Gaudó, Senior Member, IEEE, and Carlos Bernal, Student Member, IEEE

Abstract—One of the main advantages of class E amplifiers for RF and microwave applications relies on the inclusion of a shunt capacitance in the tuned output network. At high frequencies, this capacitance is mainly provided by the output parasitic capacitance of the device with perhaps a linear external one for fine adjustments. The device's output capacitance is nonlinear and this influences the design parameters, frequency limit of operation, and performance of the class E amplifier. This paper presents a design method for the class E amplifier with shunt capacitance combining a nonlinear and linear one for any duty cycle, any capacitance's nonlinear dependence parameters, and any loaded quality factor of the tuned network. Nonlinear design with possibly different duty cycles is of relevance to maximize power or, alternatively, frequency utilization of a given device. Experimental, simulated, and compared results are presented to prove this design procedure.

Index Terms—Class E amplifier, duty cycle, high efficiency, nonlinear shunt capacitance, RF power.

I. INTRODUCTION

CLASS E amplifiers [1] are advantageous networks for high-efficiency RF amplifiers because of the inclusion in the output tuned network of a capacitor shunting the device (C_1) . As frequency increases, the parasitic capacitance of the device dominates the shunt capacitance. This capacitance is nonlinear and can be expressed by¹

$$C_{\rm out}(v) = \frac{C_{jo}}{\left(1 + \frac{v}{V_{\rm bi}}\right)^n} \tag{1}$$

with C_{jo} being the capacitance at zero voltage, V_{bi} being the built-in potential (generally ranging from 0.5 to 0.9), and n being the grading coefficient of the pn-junction.

Several authors acknowledge the importance of designing class E amplifiers taking into account this nonlinear capacitance, and a few approaches have been published. The analytical solution for a restricted set of conditions was started by Chudobiak in [2] for n = 0.5 and duty cycle was also 0.5. A more

Digital Object Identifier 10.1109/TMTT.2006.890512

Fig. 1. Class E resonant tuned circuit with losses.

practical example with similar restrictions is presented in [3] and further discussed in [4], allowing combinations of linear and nonlinear shunt capacitances, something already seen in [5]. Numerical approaches expand the method for a variety of grading coefficients and several other more realistic situations [6], [7], but the degree of freedom presented in this paper is novel.

This method is based on the computation of an equivalent linear capacitance C_{eq} of the device's nonlinear one, as defined in [8] and [9]. The linear equivalent includes both the linear external capacitor and the nonlinear parasitic contribution. As a consequence of this definition, the frequency limit of the amplifier can be improved [10], [11]. The advantage of such a capacitance is the ability to account for the nonlinearities in classical designs by mere substitution of C_1 with the equivalent value, except for some effects (such as the maximum drain peak voltage) that are recalculated. The form factor α is defined to describe the role played by the nonlinear counterpart in C_{eq} .

In this paper, we present a class E design method for the circuit depicted in Fig. 1, including the nonlinear output capacitance of the device, valid under the following conditions.

- Condition 1) Any duty cycle. This is important because for a given device and frequency of operation, maximum output power may be obtained at a different duty cycle than 50%. Additionally, to maximize the frequency of a device in class E for a given output power, optimum *D* is 33% [10].
- Condition 2) Efficiency is 100%, thus, the zero-voltageswitching (ZVS) $v_D(2\pi) = 0$ condition is satisfied, but the zero-voltage-derivative-switching (ZVDS) condition $(dv_D/dt(2\pi) = 0)$ is not mandatory (if satisfied,

Manuscript received August 8, 2006; revised October 3, 2006.

The authors are with the Department of Electronics Engineering and Communications and the Power Electronics and Microelectronics Group, Aragón Institute for Engineering Research, University of Zaragoza, 50018 Zaragoza, Spain (e-mail: amediano@ieee.org).

Color versions of one or more of the figures in this paper are available online at http://ieeexplore.ieee.org.

¹Although this work is primarily aimed at power MOSFETs, analysis may be applied to other microwave devices such as MESFETs, HBTs, pseudomorphic HEMTs (pHEMTs), etc.

optimum operating conditions will occur, if not, nominal switching conditions). Losses in all the network components and in the device may also be considered, in which case, η will not be 100%. Losses are accounted for in the performance, but not modifying the design values of the class E components.

- Condition 3) The built-in potential $V_{\rm bi}$ and the grading coefficient n in (1) are not fixed and can be chosen by the designer. Guidelines on how to obtain them are provided.
- Condition 4) Loaded quality factor of the tuned output network is not necessarily high and, again, can be chosen by the designer.

The resulting circuit parameters and performance of the class E amplifier are numerically obtained. A good number of representative results are presented graphically and in tables. To prove this method, three different verification approaches are included.

II. EQUIVALENT CAPACITANCE AND FORM FACTOR

Utilizing the nonlinear description of the capacitance in a completely analytical description of the class E amplifier has proven unfeasible unless a good number of constraints are imposed in the assumptions.

The equivalent capacitance [8] C_{eq} obtained and used in this paper is specifically defined as *the constant (thus, linear) capacitance that substituted for the nonlinear intrinsic capacitance* $C_{out}(v)$ produces the same nominal operating conditions (ZVS) at the instant of turn on that would occur with the real device's capacitance, maintaining the values of the rest of the amplifier's elements. Such a linear equivalent is also used in [3], but in this case, the ZVDS condition is always assumed, which is a more particular case of the one used here.²

With this definition, classical design methods may be used, substituting the nonlinear capacitance for its equivalent one. Nevertheless, and even though the equivalent capacitance yields the same switching conditions as the real capacitance, the voltage waveform across the device with a nonlinear capacitance is different during the OFF interval. The nonlinear nature of the capacitance increases the voltage peak across the device, even though the switching occurs under the same conditions and at the same instant. The increase factor depends on the fraction of the total capacitance that is provided by the device. This detail has to be taken into account by designers to select transistors with a higher breakdown voltage in order to maintain safe operating conditions for the amplifier and to protect the circuit from over-voltages due to nonlinearities. The design method presented in this paper provides the new peak voltage value normalized by the supply voltage.

To quantify the percentage of nonlinearity in C_1 , we define the form factor α as the quotient of the equivalent capacitance C_{eq} and the theoretical value of C_1

$$\alpha = \frac{C_{\rm eq}}{C_1} \tag{2}$$

Fig. 2. Equivalent capacitance with two different supply voltages.

with

$$C_1 = C_{\rm eq} + C_{\rm ext} \tag{3}$$

where $\alpha = 0$, C_1 is completely linear (classical analysis is completely valid). If $\alpha = 1$, it means that C_1 is completely produced by C_{eq} ; i.e., C_{ext} equals zero and $C_{out}(v)$ provides the whole necessary C_1 . To estimate the equivalent capacitance, it is necessary to know the device's output capacitance response [see (1)], in this sense, every single parameter influencing $v_D(t)$ would also influence $C_{out}(v)$; therefore, the supply voltage and the form factor play a relevant role in $C_{out}(v)$. Mathematically,

$$C_{\rm eq} = f(C_{jo}, n, V_{\rm bi}, V_{\rm DC}, \alpha). \tag{4}$$

A. Supply Voltage Influence on C_{eq}

According to the mathematical model chosen to represent the voltage dependence of $C_{out}(v)$, the higher the supply voltage V_{DC} , the lower the equivalent capacitance because $C_{out}(v)$ will reach lower values due to broader voltage excursions. In Fig. 2, two operating situations have been plotted with two different supplies, i.e., V_{DC1} and V_{DC2} , each one leading to a different voltage waveform and to a different peak voltage $(v_{D(pk)1})$ and $v_{D(pk)2}$. The excursion to a higher voltage value in the second case yields a reduction in the equivalent capacitance value.

B. Form Factor α Influence on C_{eq}

The equivalent capacitance also depends on the contribution of the nonlinear capacitance to the total required capacitance C_1 . This contribution is exactly what is characterized by the form factor α . Thus, the higher the value of α (the closer it is to unity), the greater the influence of the nonlinearities and, therefore, the higher the voltage peak across the device. The equivalent capacitance increases at the same rate as the contribution

²This analysis could also be restricted to include the condition of zero voltage derivative at turn on and, therefore, calculate the optimum linear equivalent capacitance. On the other hand, the nominal operating mode has been adopted in order to achieve greater generality.

Fig. 3. Drain voltage waveform for three different form factors. $\alpha = 0.05$: solid line. $\alpha = 0.55$: gray line. $\alpha = 1$: dotted line.

 TABLE I

 CLASS E CIRCUIT VALUES FOR THREE DIFFERENT FORM FACTORS [10]

	D	Q_L	$C_jo[pF]$	n	Vbi		$V_{DC}[V]$		
	0.5	10.62	1000	0.4	0.65	5	20		
									•
					α	$\int f$	[MHz]	0	$\overline{\mathcal{D}_{eq}[pF]}$
	Q	UASI-L	NEAR		0.05	0.1534			137.29
P	ARTI	ALLY N	ONLINEA	R	0.555	1.2437			274.77
CC	MPL	ETELY	NONLINE	AR	1		2.0623		304.28

of the device capacitance increases in relation to the total C_1 . Fig. 3 illustrates three different responses of a class E amplifier with the same output nonlinear capacitance (e.g., the same device) and the same supply voltage, but at three different frequencies. At very low frequencies, 150 kHz in the example, the nonlinear device capacitance is a negligible part of the total capacitance and the linear capacitance dominates. On the other hand, at 2 MHz, the nonlinear device output capacitance dominates the total capacitance required for optimal class E operation. The actual values are given in Table I. The switching conditions remain the same, but the equivalent capacitances, the form factors, peak voltages, and waveforms are different.

C. Computing the Linear Equivalent Capacitance

To compute the equivalent capacitance, a numerical statespace description of the class E amplifier has been programmed, allowing for nonlinear capacitance and including losses in all the circuit elements [12]. To compute the equivalent capacitance, the algorithm comprises the following steps.

- Step 1) First design a completely linear and ideal class E, obtaining a linear C_1 by means of classical results (e.g., [13]).
- Step 2) Substitute the linear capacitance C_1 for a partially nonlinear one (thus, α needs to be known) and an external one. Change the nonlinearity constant C_{jo} and iterate until equivalent nominal switching conditions are obtained (ZVS). Alternatively, also include ZVDS for the optimum equivalent. To do this, n and V_{bi} have to been known. To estimate those values, use a reverse curve-fitting method, if any information of variation of output capacitance with voltage is provided in the datasheet, or obtain those values from measurements [14] if otherwise.
- Step 3) This computed nonlinear capacitance will be the equivalent of the previous linear one. This equiv-

Fig. 4. Equivalent normalized capacitance $C_{\rm eqn}$ as a function of $V_{\rm DC}$ for Q = 5 and D = 0.5 for $\alpha = 0.5$ (solid line) and $\alpha = 1$ (dashed line), and for two different values of $n: n = 0.3(-\Box -)$ and $n = 0.5(-\circ -)$. In all cases, $V_{\rm bi} = 0.6$.

alent capacitance is a function of the values of n, $V_{\rm bi}$, $V_{\rm DC}$, and α that have been considered.

For simplicity in this paper, a good number of equivalent capacitances have been computed and are presented in the tables included in the Appendix for a wide range of supply voltages and form factors and for several values of n and D. A clarifying explanation on how the computation of a $C_{\rm eq}$ integrates in the design process is provided in Section IV.

III. CIRCUIT ANALYSIS

The circuit of the class E amplifier analyzed is presented in Fig. 1. The derivation of the equations considers the following assumptions.

- The inductance of the choke coil L_1 is large enough so that current may be considered constant.
- The shunt capacitance is considered linear, but it consists of the linear equivalent of the nonlinear output capacitance and the external capacitor. Therewith, nonlinearities are taken into account.

Let the starting point of this analysis be the amplifiers response constants [13], which are defined by

$$\frac{\omega \cdot L_2}{R_L} = K_1$$

$$\omega \cdot R_L \cdot C_2 = K_2$$

$$\omega \cdot R_L \cdot C_1 = K_3 = K$$
(5)

with C_1 from (3). The nominal operating waveforms of the amplifier depend on these constants. Thus, different circuit parameters of the output tuning network R_L, C_1, C_2 , and L_2 yield the very same waveforms under nominal operating conditions if the preceding parameters K_1, K_2 , and K remain constant. These amplifier response constants are Q and D dependent.

Substituting C_1 for (2),

$$2\pi \cdot f \cdot R_L \cdot \frac{C_{\text{eq}}}{\alpha} = K(Q_1, D) \tag{6}$$

Fig. 5. Equivalent normalized capacitance $C_{\rm eqn}$ as a function of the form factor α for Q = 5, $V_{\rm bi} = 0.6$, and n = 0.5. (a) For several values of $V_{\rm DC}$: $V_{\rm DC} = 1.5$ V $(-\circ -)$, $V_{\rm DC} = 3$ V $(-\diamondsuit -)$, $V_{\rm DC} = 6$ V (-*-), $V_{\rm DC} = 12$ V $(-\nabla -)$, $V_{\rm DC} = 24$ V $(-\Box -)$. In all these cases, D = 0.5. (b) Fixed supply voltage of 12 V and several duty cycles: D = 0.25 (dashed line), D = 0.5 (solid line), and D = 0.75 (dotted line).

with Q_1 being the loaded quality factor of the output network in conduction.³

A certain $C_{\rm eq}$ calculated for a particular amplifier with a specific load and operation frequency will still be valid for other cases provided that $\omega \cdot R_L \cdot C_1, \omega \cdot R_L \cdot C_2$ and $\omega \cdot L_2/R_L$ remain constant in all of them.

A. Parameter Normalization

A normalization of the equivalent capacitance by the factor C_{jo} proves very interesting because C_{jo} is a mere linear scaling factor in the characterization of the linear equivalent capacitance C_{eq} (1). Thus, the following normalization can be applied:

$$C_{\rm eq} = C_{jo} \cdot C_{\rm eqn}.$$
 (7)

 ${}^3Q_1=\omega_1L_2/R_L,$ where $\omega_1^2=1/(L_2C_2).$ The expression may be related to $Q_L=\omega L_2/R_L$ [13].

Fig. 6. (a) Normalized drain peak voltage $v_{\rm pkn}$ as a function of α for D = 0.25 (dashed line), D = 0.5 (solid line), and D = 0.75 (dotted line) and for $Q = 2(-\nabla -)$, $Q = 5(-\circ -)$ and $Q = 10(-\Box -)$ for $V_{\rm DC} = 12$ V and for n = 0.5. (b) Normalized drain peak voltage $v_{\rm pkn}$ as a function of $V_{\rm DC}$ for the particular case of D = 0.5 and Q = 5 and for $\alpha = 1$ (solid line), $\alpha = 0.5$ (dashed line), and $\alpha = 0.1$ (dotted line) and for $n = 0.3(-\Diamond -)$ and $n = 0.5(-\circ -)$. In all cases, $V_{\rm bi} = 0.6$.

Including this in (6),

$$2\pi \cdot f \cdot R_L \cdot C_{jo} \cdot \frac{C_{\text{eqn}}}{\alpha} = K(Q_1, D).$$
(8)

In general, the normalizing equations can be defined as follows.

1) Normalized frequency

$$f_n = f \cdot R_L \cdot C_{jo}. \tag{9}$$

2) Normalized equivalent capacitance

$$C_{\rm eqn} = \frac{C_{\rm eq}}{C_{jo}}.$$
 (10)

Fig. 7. Class E design process using numerical results in the tables. V_{max} is the maximum voltage withstood by the transistor (given by manufacturers in the datasheet).

By combining them all and substituting in (6), the following expression is obtained:

$$2\pi \cdot f_n \cdot \frac{C_{\text{eqn}}}{\alpha} = K(Q_1, D).$$
(11)

 TABLE II

 VERIFICATION BY COMPARISON WITH [4]

		Specifications									
$\int f$	4MHz	D	0.5								
V_{DD}	20V	Q	10								
P_o	4W										
	Circ	uit parameters o	btained								
	In [4] This method										
	Theory	Experiment									
f	4MHz	3.91MHz	4MHz								
R	57.5Ω	51Ω	57.68Ω								
C_{ext}	40pF	20pF	$60.4 pF-C_{stray}$								
C_{eq}	Not c	alculated	87.75pF								
L_2	$22.9 \mu H$	$23 \mu H$	$22.95 \mu H$								
C_2	79.4pF	77pF	78.306pF								
$L_{1(MIN)}$	$100 \mu H$	$100 \mu H$	$100 \mu H$								
v_{Dpeak}	80.8 V	87.17V	79.691V								
$v_{om_{load}}$	21.48V	22.51V	21.481V								
η	-	91%	98%								

NOTE: Cstray accounts for PCB parasitics or oscilloscope probe.

Fig. 8. Class E amplifier with losses built for experimental verification.

Maintaining K_1 and K_2 constant and solving the problem numerically for K leads to the results determining the design parameters. We have obtained a set of equations with a significant generality, provided that the values of K_1, K_2 , and K remain constant. This is important because it makes the results independent of actual load resistance R_L and of C_{jo} (which depends on the exact member of a device family). The normalization might also be extended to voltage and current waveforms, defining the normalized voltage or current as the value of the voltage across or current through a node divided by the value of $V_{\rm DC}$ or $I_{\rm DC}$, respectively. The normalized results of the numerical design method will be presented according to this nomenclature.

Some results are shown here in the form of graphs. In Fig. 4, the dependence of C_{eqn} with V_{DC} is shown for two different form factors and two different *n* values. The more linear the capacitance (lower α), the lower the equivalent capacitance. As *n* increases, the device's output capacitance also decreases and so does C_{eq} . Fig. 4 graphically shows the effect described in Section II-A, demonstrating that the higher the supply voltage, the lower the equivalent capacitance. Fig. 5(a) shows the dependence of C_{eqn} with α for several values of supply voltage. In Fig. 5(b), the same dependence is shown, but for three different duty cycles. Fig. 6(a) and (b) shows the results for the normalized peak voltage v_{pkn} as a function of α and V_{DC} , respectively. The first one shows that the peak varies strongly with the duty

Design Parameters											
Device	PolyFET P123	f	100MHz								
V_{DC}	16V	P_o	$1\mathbf{W}$								
D	0.3	Q	5								
Circuit values											
	Theory	Simulation	Prototype								
C_1	15pF	-	-								
C_{ext}	-	$8 \mathrm{pF} \; (ESR@100MHz = 0.01\Omega)$	Probe setup (approx. 8pF)								
C_{eq}	7.04p F $\alpha=0.425$	-	-								
R_{Lopt}	24Ω	16.2Ω	16.2Ω								
L_1	600nH	538nH ($ESR@100MHz = 2.817\Omega$)	Coilcraft 132-20SM MaxiSpring								
L_2	257.31nH	246nH ($ESR@100MHz = 1.2\Omega$)	Coilcraft 132-15SM MaxiSpring								
C_2	17.86pF	18pF ($ESR@100MHz = 0.2\Omega$)	08051A180JA AVX USeries								
Results											
	Theory	Simulation	Measured								
$v_{Dpk}^{(1)}$	46.15V	42V	48.3V								
v_{ompk}	5.63	5.1V	4.6V								
η	72.7%	66%	71.4%								

TABLE III SIMULATED AND EXPERIMENTAL VERIFICATION CIRCUIT

cycle and does not vary significantly with Q. In general, the peak voltage value is higher for increasingly nonlinear situations, as expected. Fig. 6(b) highlights that, except for very low values of supply voltage, the normalized peak value does not depend on the actual $V_{\rm DC}$ and the more nonlinear (higher form factor, higher n), the higher the peak.

IV. DESIGN PROCEDURE

Generally, the specifications of a class E amplifier are: frequency, intended output power, and available supply voltage, and sometimes also output harmonic content (Q_L) . Generally, duty ratio is not predetermined by external conditions, although some constraints may apply depending on the available driver. If no external constraints apply, the idea is to select a duty cycle equal to 0.3 to maximize the frequency utilization of a device or, alternatively, use [15] to maximize output power depending on losses.

At this point, there are two possible lines of action. The first one is to use the tables that include numerical results in the Appendix. If the exact parameter values for D, Q or V_{DC} are not listed in them, interpolating values are still applicable with good results. How to design a class E amplifier using this method is summarized in the flowchart of Fig. 7. Secondly, if the parameter values are very different to those in the tables, or high accuracy needs to be achieved, additional numerical results need to be obtained and the method needs to be numerically programmed. To do so, the following steps apply.

- Step 1) Calculate $C_{\rm eq}$ with the method proposed in Section II-C. Iterate for a good number of α values and some possible variation of $V_{\rm DC}$ depending on constraints. Obtain $C_{\rm eqn}$ with (10). This yields the first column of the table.
- Step 2) Compute response constants with (5) and derive f_n with (11). This gives the second part of the table.
- Step 3) Compute peak voltage values and divide by $V_{\rm DC}$ to obtain the third part of the numerical tables.

Fig. 9. Waveforms of drain voltage v_D and gate voltage in SPICE simulated (dotted line) and experimental (solid line) test circuit for the design example in Table III.

V. VERIFICATION

Three different procedures are investigated to verify this design method. The first one uses the particular results obtained in [4] to compare with a similarly specified design. In the second one, a circuit is designed and simulated in SPICE, and in the third case, the simulated circuit is built and tested to add experimental results to this paper, further proving the method.

A. Comparison With Other Analysis

In [4], an analytical method to design class E amplifiers with a combination of nonlinear and linear shunt capacitances is presented. The duty cycle is fixed to 0.5, as well as the grading coefficient (n = 0.5), and the quality factor of the tuned output network is high, so, output is a sine wave. Making these particularizations in our design procedure and using similar specifications, the design values obtained (Table II) are exactly the same, except for the equivalent capacitance of the IRF510 transistor (something not calculated in [4]), which

TABLE IV Numerical Results for Design Procedure for $Q_1=5\,$

\square^{D}	= 0.25	$5 \cdot Q_1 =$	$5 \cdot V_{bi}$:	$= 0.6 \cdot r$	n = 0.3													
				$V_{DC}[V]$						$V_{DC}[V]$								
C_e	qn	1.5	3	6	12	24	f_n	1.5	3	6	12	24	v_{Dpkn}	1.5	3	6	12	24
	0.1	0.539	0.47	0.398	0.314	0.264		0.006	0.007	0.008	0.009	0.011		2.481	2.557	2.565	2.457	2.464
	0.25	0.673	0.586	0.455	0.385	0.317		0.012	0.013	0.016	0.019	0.023		2.556	2.61	2.586	2.541	2.544
α	0.50	0.693	0.604	0.512	0.426	0.342		0.022	0.026	0.03	0.036	0.044		2.621	2.671	2.676	2.643	2.646
	0.75	0.739	0.644	0.546	0.43	0.348		0.031	0.036	0.043	0.051	0.062		2.748	2.802	2.816	2.715	2.751
	1	0.77	0.671	0.568	0.43	0.358		0.04	0.046	0.054	0.072	0.086		2.825	2.925	2.979	2.91	2.958
D	$= 0.5 \cdot$	$Q_1 = 5$	$5 \cdot V_{bi} =$	$0.6 \cdot n$	= 0.3													
			$V_{DC}[V$	7]					$V_{DC}[V$	7]					$V_{DC}[V$	7]		
C_e	qn	1.5	3	6	12	24	f_n	1.5	3	6	12	24	v_{Dpkn}	1.5	3	6	12	24
	0.1	0.539	0.47	0.398	0.293	0.234		0.006	0.007	0.008	0.01	0.012		3.69	3.694	3.687	3.693	3.669
	0.25	0.673	0.482	0.4	0.361	0.298		0.012	0.014	0.017	0.02	0.024		3.78	3.702	3.713	3.723	3.724
α	0.50	0.647	0.584	0.485	0.392	0.333		0.024	0.027	0.032	0.039	0.047		3.786	3.779	3.785	3.785	3.824
	0.75	0.725	0.6	0.502	0.415	0.342		0.033	0.038	0.045	0.054	0.066		3.837	3.842	3.854	3.918	3.929
	1	0.725	0.611	0.515	0.427	0.355		0.045	0.054	0.064	0.077	0.093		3.915	3.952	3.984	4.115	4.147
$D = 0.75 \cdot Q_1 = 5 \cdot V_{bi} = 0.6 \cdot n = 0.3$																		
			$V_{DC}[V$	/]					$V_{DC}[V$	7]					$V_{DC}[V$	<u>/]</u>		
C_e	qn	1.5	3	6	12	24	f_n	1.5	3	6	12	24	v_{Dpkn}	1.5	3	6	12	24
	0.1	0.145	0.143	0.125	0.088	0.075		0.001	0.001	0.002	0.002	0.002		7.259	7.242	7.238	7.216	7.22
	0.25	0.438	0.33	0.275	0.222	0.184		0.002	0.003	0.003	0.004	0.005		7.387	7.314	7.283	7.285	7.303
α	0.50	0.507	0.41	0.35	0.288	0.238		0.005	0.005	0.006	0.008	0.009		7.403	7.395	7.455	7.485	7.494
	0.75	0.535	0.446	0.37	0.309	0.253		0.007	0.008	0.009	0.011	0.013		7.546	7.572	7.628	7.645	7.668
	1	0.557	0.475	0.397	0.33	0.272		0.012	0.014	0.016	0.02	0.024		8.044	8.083	8.189	8.28	8.352
D	= 0.25	$5 \cdot Q_1 =$	$5 \cdot V_{bi}$	$-0.6 \cdot r$	n = 0.5													
$\frac{1}{V_{DC}[V]}$			- 0.0 7	i = 0.0														
			$V_{DC}[V$	<u> </u>	<i>i</i> = 0.5				$V_{DC}[V$	7]					$V_{DC}[V$	7]		
	qn	1.5	V _{DC} [V 3	/ [6	12	24	f_n	1.5	<i>V</i> _{DC} [<i>V</i> 3	7] 6	12	24	v_{Dpkn}	1.5	<i>V</i> _{DC} [<i>V</i> 3	/] 6	12	24
C_e	^{qn} 0.1	1.5 0.453	$V_{DC}[V]$ 3 0.36	6 0.273	12 0.201	24 0.145	f_n	1.5 0.007	V _{DC} [V 3 0.009	6 0.011	12 0.015	24 0.021	v_{Dpkn}	1.5 2.499	V _{DC} [V 3 2.569	6 2.569	12 2.557	24 2.515
	^{qn} 0.1 0.25	1.5 0.453 0.565	$ \begin{array}{c} V_{DC}[V \\ 3 \\ 0.36 \\ 0.449 \end{array} $	6 0.273 0.341	12 0.201 0.251	24 0.145 0.173	f_n	1.5 0.007 0.014	V _{DC} [V 3 0.009 0.017	6 0.011 0.023	12 0.015 0.031	24 0.021 0.043	v_{Dpkn}	1.5 2.499 2.596	V _{DC} [V 3 2.569 2.65	6 2.569 2.654	12 2.557 2.645	24 2.515 2.569
C_e	^{qn} 0.1 0.25 0.50	1.5 0.453 0.565 0.582	$V_{DC}[V \\ 3 \\ 0.36 \\ 0.449 \\ 0.463$	6 0.273 0.341 0.351	12 0.201 0.251 0.245	24 0.145 0.173 0.181	f_n	1.5 0.007 0.014 0.027	V _{DC} [V 3 0.009 0.017 0.033	6 0.011 0.023 0.044	12 0.015 0.031 0.06	24 0.021 0.043 0.083	v_{Dpkn}	1.5 2.499 2.596 2.713	V _{DC} [V 3 2.569 2.65 2.771	6 2.569 2.654 2.782	12 2.557 2.645 2.769	24 2.515 2.569 2.812
C_e	^{qn} 0.1 0.25 0.50 0.75	1.5 0.453 0.565 0.582 0.621	$V_{DC}[V \\ 3 \\ 0.36 \\ 0.449 \\ 0.463 \\ 0.493 \\ 0.493$	6 0.273 0.341 0.351 0.374	12 0.201 0.251 0.245 0.257	24 0.145 0.173 0.181 0.189	f_n	1.5 0.007 0.014 0.027 0.037	V _{DC} [V 3 0.009 0.017 0.033 0.047	6 0.011 0.023 0.044 0.062	12 0.015 0.031 0.06 0.084	24 0.021 0.043 0.083 0.117	v _{Dpkn}	1.5 2.499 2.596 2.713 2.915	V _{DC} [V 3 2.569 2.65 2.771 2.989	6 2.569 2.654 2.782 3.012	12 2.557 2.645 2.769 3.012	24 2.515 2.569 2.812 3.073
C_e	<pre>qn 0.1 0.25 0.50 0.75 1</pre>	1.5 0.453 0.565 0.582 0.621 0.646	$\begin{matrix} V_{DC}[V\\ \textbf{3}\\ 0.36\\ 0.449\\ 0.463\\ 0.493\\ 0.506\end{matrix}$	6 0.273 0.341 0.351 0.374 0.368	12 0.201 0.251 0.245 0.257 0.258	24 0.145 0.173 0.181 0.189 0.192	f_n	1.5 0.007 0.014 0.027 0.037 0.048	V _{DC} [V 3 0.009 0.017 0.033 0.047 0.061	6 0.011 0.023 0.044 0.062 0.084	12 0.015 0.031 0.06 0.084 0.12	24 0.021 0.043 0.083 0.117 0.161	v_{Dpkn}	1.5 2.499 2.596 2.713 2.915 3.102	V _{DC} [V 3 2.569 2.65 2.771 2.989 3.2	6 2.569 2.654 2.782 3.012 3.155	12 2.557 2.645 2.769 3.012 3.375	24 2.515 2.569 2.812 3.073 3.492
C_e α	qn 0.1 0.25 0.50 0.75 1 $= 0.5 \cdot 1$	$ \begin{array}{c} 1.5 \\ 0.453 \\ 0.565 \\ 0.582 \\ 0.621 \\ 0.646 \\ \cdot Q_1 = 5 \end{array} $	$V_{DC}[V \\ 3 \\ 0.36 \\ 0.449 \\ 0.463 \\ 0.493 \\ 0.506 \\ 5 \cdot V_{bi} =$	$\begin{array}{c} 6 \\ 0.273 \\ 0.341 \\ 0.351 \\ 0.374 \\ 0.368 \end{array}$	$12 \\ 0.201 \\ 0.251 \\ 0.245 \\ 0.257 \\ 0.258 \\ = 0.5$	24 0.145 0.173 0.181 0.189 0.192	f_n	1.5 0.007 0.014 0.027 0.037 0.048	V _{DC} [V 3 0.009 0.017 0.033 0.047 0.061	6 0.011 0.023 0.044 0.062 0.084	12 0.015 0.031 0.06 0.084 0.12	24 0.021 0.043 0.083 0.117 0.161	v _{Dpkn}	1.5 2.499 2.596 2.713 2.915 3.102	V _{DC} [V 3 2.569 2.65 2.771 2.989 3.2	6 2.569 2.654 2.782 3.012 3.155	12 2.557 2.645 2.769 3.012 3.375	24 2.515 2.569 2.812 3.073 3.492
α	qn 0.1 0.25 0.50 0.75 1 $= 0.5 \cdot c$	$ \begin{array}{c} 1.5 \\ 0.453 \\ 0.565 \\ 0.582 \\ 0.621 \\ 0.646 \\ \hline Q_1 = 5 \end{array} $	$\begin{array}{c} V_{DC}[V \\ 3 \\ \hline 0.36 \\ 0.449 \\ 0.463 \\ 0.493 \\ 0.506 \\ \hline 5 \cdot V_{bi} = \\ V_{DC}[V \\ \end{array}$	6 0.273 0.341 0.351 0.374 0.368 = 0.6 · n /]	$ \begin{array}{c} 12 \\ 0.201 \\ 0.251 \\ 0.255 \\ 0.257 \\ 0.258 \\ = 0.5 \end{array} $	24 0.145 0.173 0.181 0.189 0.192	fn	1.5 0.007 0.014 0.027 0.037 0.048	V _{DC} [V 3 0.009 0.017 0.033 0.047 0.061 V _{DC} [V	6 0.011 0.023 0.044 0.062 0.084	12 0.015 0.031 0.06 0.084 0.12	24 0.021 0.043 0.083 0.117 0.161	v _{Dpkn}	1.5 2.499 2.596 2.713 2.915 3.102	V _{DC} [V 3 2.569 2.65 2.771 2.989 3.2 V _{DC} [V	6 2.569 2.654 2.782 3.012 3.155	12 2.557 2.645 2.769 3.012 3.375	24 2.515 2.569 2.812 3.073 3.492
C_e α D C_e	qn 0.1 0.25 0.50 0.75 1 = 0.5 ·	$ \begin{array}{c} 1.5 \\ 0.453 \\ 0.565 \\ 0.582 \\ 0.621 \\ 0.646 \\ \hline Q_1 = 5 \\ 1.5 \end{array} $	$\begin{array}{c} V_{DC}[V\\ 3\\ 0.36\\ 0.449\\ 0.463\\ 0.493\\ 0.506\\ 5\cdot V_{bi} =\\ V_{DC}[V\\ 3\\ \end{array}$	$\begin{array}{c} 6 \\ 0.273 \\ 0.341 \\ 0.351 \\ 0.374 \\ 0.368 \\ \mathbf{c} 0.6 \cdot \mathbf{n} \\ 7 \\ 6 \end{array}$	$ \begin{array}{r} 12 \\ 0.201 \\ 0.251 \\ 0.245 \\ 0.257 \\ 0.258 \\ = 0.5 \\ 12 \\ \end{array} $	24 0.145 0.173 0.181 0.189 0.192 24	f_n	1.5 0.007 0.014 0.027 0.037 0.048	V _{DC} [V 3 0.009 0.017 0.033 0.047 0.061 V _{DC} [V 3	6 0.011 0.023 0.044 0.062 0.084	12 0.015 0.031 0.06 0.084 0.12	24 0.021 0.043 0.083 0.117 0.161 24	v _{Dpkn}	1.5 2.499 2.596 2.713 2.915 3.102 1.5	V _{DC} [V 3 2.569 2.65 2.771 2.989 3.2 V _{DC} [V 3	6 2.569 2.654 2.782 3.012 3.155	12 2.557 2.645 2.769 3.012 3.375 12	24 2.515 2.569 2.812 3.073 3.492 24
$\begin{array}{c} & \\ \hline C_e \\ \\ \\ \\ \hline \\ \\ \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ $	qn 0.1 0.25 0.50 0.75 1 $= 0.5 \cdot qn$ qn 0.1	1.5 0.453 0.565 0.582 0.621 0.646 $\cdot Q_1 = \xi$ 1.5 0.453	$\begin{array}{c} V_{DC}[V] \\ \hline \\ 3 \\ 0.36 \\ 0.449 \\ 0.463 \\ 0.493 \\ 0.506 \\ \hline \\ 5 \cdot V_{bi} = \\ V_{DC}[V] \\ \hline \\ 3 \\ 0.276 \end{array}$	6 0.273 0.341 0.351 0.374 0.368 = 0.6 · n [] 6 0.182	$ \begin{array}{c} 12 \\ 0.201 \\ 0.251 \\ 0.245 \\ 0.257 \\ 0.258 \\ = 0.5 \\ \end{array} $	24 0.145 0.173 0.181 0.189 0.192 24 0.129	f_n	1.5 0.007 0.014 0.027 0.037 0.048 1.5 0.007	$\begin{array}{c} V_{DC}[V\\ \textbf{3}\\ 0.009\\ 0.017\\ 0.033\\ 0.047\\ 0.061\\ \hline \\ V_{DC}[V\\ \textbf{3}\\ 0.009\\ \end{array}$	6 0.011 0.023 0.044 0.062 0.084	12 0.015 0.031 0.06 0.084 0.12	24 0.021 0.043 0.083 0.117 0.161 24 0.023	v _{Dpkr}	1.5 2.499 2.596 2.713 2.915 3.102 1.5 3.703	V _{DC} [V 3 2.569 2.65 2.771 2.989 3.2 V _{DC} [V 3 3.692	6 2.569 2.654 2.782 3.012 3.155	12 2.557 2.645 2.769 3.012 3.375 12 3.706	24 2.515 2.569 2.812 3.073 3.492 24 3.716
$\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	qn 0.1 0.25 0.50 0.75 1 $= 0.5 \cdot$ qn 0.1 0.25	$\begin{array}{c} \textbf{1.5} \\ 0.453 \\ 0.565 \\ 0.582 \\ 0.621 \\ 0.646 \\ \hline 0.646 \\ \hline \textbf{0.453} \\ 0.453 \\ 0.494 \end{array}$	$\begin{array}{c} \mathbf{v}_{DC}[V\\ 3\\ 0.36\\ 0.449\\ 0.463\\ 0.493\\ 0.506\\ 5\cdot V_{bi} = \\ V_{DC}[V\\ 3\\ 0.276\\ 0.353\\ \end{array}$	$\begin{array}{c} 6 \\ 0.273 \\ 0.341 \\ 0.351 \\ 0.374 \\ 0.368 \\ \mathbf{c} \\ 0.6 \\ \mathbf{n} \\ 7 \\ 6 \\ 0.182 \\ 0.283 \end{array}$	$ \begin{array}{c} 12 \\ 0.201 \\ 0.251 \\ 0.245 \\ 0.257 \\ 0.258 \\ = 0.5 \\ \hline 12 \\ 0.168 \\ 0.221 \\ \end{array} $	24 0.145 0.173 0.181 0.189 0.192 24 0.129 0.167	f_n	1.5 0.007 0.014 0.027 0.037 0.048 1.5 0.007 0.015	$\frac{V_{DC}[V}{3}$ 0.009 0.017 0.033 0.047 0.061 $\frac{V_{DC}[V}{3}$ 0.009 0.018	6 0.011 0.023 0.044 0.062 0.084	12 0.015 0.031 0.06 0.084 0.12 12 0.016 0.033	24 0.021 0.043 0.083 0.117 0.161 24 0.023 0.045	v _{Dpkr}	1.5 2.499 2.596 2.713 2.915 3.102 1.5 3.703 3.773	V _{DC} [V 3 2.569 2.65 2.771 2.989 3.2 V _{DC} [V 3 3.692 3.726	6 2.569 2.654 2.782 3.012 3.155	12 2.557 2.645 2.769 3.012 3.375 12 3.706 3.759	24 2.515 2.569 2.812 3.073 3.492 24 3.716 3.769
$\begin{array}{c} C_e \\ \alpha \\ \hline \\ D \\ \hline \\ C_e \\ \alpha \end{array}$	qn = 0.1 = 0.50 = 0.50 = 0.50 = 0.50 = 0.1 = 0.25 = 0.50	1.5 0.453 0.565 0.582 0.621 0.646 $\cdot Q_1 = \xi$ 1.5 0.453 0.453 0.453 0.453 0.494 0.582	$\begin{array}{c} V_{DC}[V] \\ \hline V_{DC}[V] \\ \hline \\ \hline \\ 0.36 \\ 0.449 \\ 0.463 \\ 0.493 \\ 0.506 \\ \hline \\ \hline \\ \hline \\ V_{DC}[V] \\ \hline \\ \hline \\ 0.276 \\ 0.353 \\ 0.448 \end{array}$	$\begin{array}{c} 6 \\ 0.273 \\ 0.341 \\ 0.351 \\ 0.374 \\ 0.368 \\ 0.368 \\ 0.6 \cdot n \\ 7 \\ 6 \\ 0.182 \\ 0.283 \\ 0.337 \end{array}$	$ \begin{array}{c} 12 \\ 0.201 \\ 0.251 \\ 0.245 \\ 0.257 \\ 0.258 \\ = 0.5 \\ \hline 12 \\ 0.168 \\ 0.221 \\ 0.248 \\ \end{array} $	24 0.145 0.173 0.181 0.189 0.192 24 0.129 0.167 0.187	f_n	1.5 0.007 0.014 0.027 0.037 0.048 1.5 0.0007 0.015 0.028	$\begin{array}{c} V_{DC} [V\\ \textbf{3}\\ 0.009\\ 0.017\\ 0.033\\ 0.047\\ 0.061\\ \hline \\ V_{DC} [V\\ \textbf{3}\\ 0.009\\ 0.018\\ 0.036\\ \hline \end{array}$	6 0.011 0.023 0.044 0.062 0.084	12 0.015 0.031 0.06 0.084 0.12 12 0.016 0.033 0.064	24 0.021 0.043 0.083 0.117 0.161 24 0.023 0.045 0.088	v _{Dpkr}	1.5 2.499 2.596 2.713 2.915 3.102 1.5 3.703 3.773 3.845	V _{DC} [V 3 2.569 2.65 2.771 2.989 3.2 V _{DC} [V 3 3.692 3.726 3.862	6 2.569 2.654 2.782 3.012 3.155	12 2.557 2.645 2.769 3.012 3.375 12 3.706 3.759 3.965	24 2.515 2.569 2.812 3.073 3.492 24 3.716 3.769 4.006
$\begin{array}{c} C_e \\ \alpha \\ \hline \\ C_e \\ \alpha \\ \end{array}$	qn = 0.1 = 0.25 = 0.50 = 0.75 = 0.5 = 0.5 = 0.5 = 0.1 = 0.25 = 0.50 = 0.75 =	$\begin{array}{c} \textbf{1.5} \\ \textbf{0.453} \\ \textbf{0.565} \\ \textbf{0.582} \\ \textbf{0.621} \\ \textbf{0.646} \\ \textbf{\cdot} Q_1 = \vdots \\ \textbf{1.5} \\ \textbf{0.453} \\ \textbf{0.453} \\ \textbf{0.494} \\ \textbf{0.582} \\ \textbf{0.621} \end{array}$	$\begin{array}{c} V_{DC}[V] \\ \hline V_{DC}[V] \\ \hline 3 \\ 0.36 \\ 0.449 \\ 0.463 \\ 0.493 \\ 0.506 \\ \hline 5 \cdot V_{bi} = \\ \hline V_{DC}[V] \\ \hline 3 \\ 0.276 \\ 0.353 \\ 0.448 \\ 0.47 \\ \end{array}$	6 0.273 0.341 0.351 0.374 0.368 0.374 0.368 0.6 · n 7 6 0.182 0.283 0.337 0.348 0.348 0.348 0.341 0.368 0.341 0.368 0.368 0.374 0.368 0.375 0.348 0.337 0.348 <td>$12 \\ 0.201 \\ 0.251 \\ 0.245 \\ 0.257 \\ 0.258 \\ = 0.5 \\ 12 \\ 0.168 \\ 0.221 \\ 0.248 \\ 0.263 \\ 0.$</td> <td>24 0.145 0.173 0.181 0.189 0.192 24 0.129 0.167 0.187 0.194</td> <td>f_n</td> <td>1.5 0.007 0.014 0.027 0.037 0.048 1.5 0.007 0.015 0.028 0.04</td> <td>$\begin{array}{c} V_{DC}[V\\ \textbf{3}\\ 0.009\\ 0.017\\ 0.033\\ 0.047\\ 0.061\\ \hline \\ V_{DC}[V\\ \textbf{3}\\ 0.009\\ 0.018\\ 0.036\\ 0.05\\ \hline \end{array}$</td> <td>6 0.011 0.023 0.044 0.062 0.084 6 0.012 0.024 0.024 0.047 0.066</td> <td>12 0.015 0.031 0.06 0.084 0.12 12 0.016 0.033 0.064 0.09</td> <td>24 0.021 0.043 0.117 0.161 24 0.023 0.045 0.088 0.124</td> <td>v_{Dpkr}</td> <td>1.5 2.499 2.596 2.713 2.915 3.102 1.5 3.703 3.773 3.845 3.987</td> <td>$\begin{array}{c} V_{DC}[V\\ \textbf{3}\\ 2.569\\ 2.65\\ 2.771\\ 2.989\\ 3.2\\ \hline \\ V_{DC}[V\\ \textbf{3}\\ 3.692\\ 3.726\\ 3.862\\ 4.007\\ \hline \end{array}$</td> <td>6 2.569 2.654 2.782 3.012 3.155</td> <td>12 2.557 2.645 2.769 3.012 3.375 12 3.706 3.759 3.965 4.224</td> <td>24 2.515 2.569 2.812 3.073 3.492 24 3.716 3.769 4.006 4.276</td>	$12 \\ 0.201 \\ 0.251 \\ 0.245 \\ 0.257 \\ 0.258 \\ = 0.5 \\ 12 \\ 0.168 \\ 0.221 \\ 0.248 \\ 0.263 \\ 0.$	24 0.145 0.173 0.181 0.189 0.192 24 0.129 0.167 0.187 0.194	f_n	1.5 0.007 0.014 0.027 0.037 0.048 1.5 0.007 0.015 0.028 0.04	$\begin{array}{c} V_{DC}[V\\ \textbf{3}\\ 0.009\\ 0.017\\ 0.033\\ 0.047\\ 0.061\\ \hline \\ V_{DC}[V\\ \textbf{3}\\ 0.009\\ 0.018\\ 0.036\\ 0.05\\ \hline \end{array}$	6 0.011 0.023 0.044 0.062 0.084 6 0.012 0.024 0.024 0.047 0.066	12 0.015 0.031 0.06 0.084 0.12 12 0.016 0.033 0.064 0.09	24 0.021 0.043 0.117 0.161 24 0.023 0.045 0.088 0.124	v _{Dpkr}	1.5 2.499 2.596 2.713 2.915 3.102 1.5 3.703 3.773 3.845 3.987	$\begin{array}{c} V_{DC}[V\\ \textbf{3}\\ 2.569\\ 2.65\\ 2.771\\ 2.989\\ 3.2\\ \hline \\ V_{DC}[V\\ \textbf{3}\\ 3.692\\ 3.726\\ 3.862\\ 4.007\\ \hline \end{array}$	6 2.569 2.654 2.782 3.012 3.155	12 2.557 2.645 2.769 3.012 3.375 12 3.706 3.759 3.965 4.224	24 2.515 2.569 2.812 3.073 3.492 24 3.716 3.769 4.006 4.276
$\begin{array}{c} \hline C_e \\ \hline \\ \\ \hline \\$	$ \begin{array}{c} qn \\ 0.1 \\ 0.25 \\ 0.50 \\ 0.75 \\ 1 \\ = 0.5 \\ qn \\ 0.1 \\ 0.25 \\ 0.50 \\ 0.75 \\ 1 \\ \end{array} $	$\begin{array}{c} \textbf{1.5} \\ \textbf{0.453} \\ \textbf{0.565} \\ \textbf{0.582} \\ \textbf{0.621} \\ \textbf{0.646} \\ \hline \textbf{Q}_1 = \{ \\ \textbf{0.646} \\ \hline \textbf{0.453} \\ \textbf{0.453} \\ \textbf{0.494} \\ \textbf{0.582} \\ \textbf{0.621} \\ \textbf{0.646} \\ \end{array}$	$\begin{array}{c} V_{DC}[V\\ 3\\ 0.36\\ 0.449\\ 0.463\\ 0.493\\ 0.506\\ 5\cdot V_{bi} = \\ V_{DC}[V\\ 3\\ 0.276\\ 0.353\\ 0.448\\ 0.47\\ 0.483\\ \end{array}$	$\begin{array}{c} 6 \\ 0.273 \\ 0.341 \\ 0.351 \\ 0.374 \\ 0.368 \\ 0.368 \\ 0.66 \cdot n \\ 7 \\ 6 \\ 0.182 \\ 0.283 \\ 0.337 \\ 0.348 \\ 0.363 \end{array}$	$12 \\ 0.201 \\ 0.251 \\ 0.245 \\ 0.257 \\ 0.258 \\ = 0.5 \\ 12 \\ 0.168 \\ 0.221 \\ 0.248 \\ 0.263 \\ 0.276 \\ 0.$	24 0.145 0.173 0.181 0.189 0.192 24 0.129 0.167 0.187 0.194 0.201	f_n	1.5 0.007 0.014 0.027 0.037 0.048 1.5 0.007 0.015 0.028 0.04 0.051	$\begin{array}{c} V_{DC}[v\\ \textbf{3}\\ 0.009\\ 0.017\\ 0.033\\ 0.047\\ 0.061\\ \hline \\ V_{DC}[v\\ \textbf{3}\\ 0.009\\ 0.018\\ 0.036\\ 0.05\\ 0.068\\ \hline \end{array}$	6 0.011 0.023 0.044 0.062 0.084	12 0.015 0.031 0.06 0.084 0.12 12 0.016 0.033 0.064 0.09 0.119	24 0.021 0.043 0.117 0.161 24 0.023 0.045 0.088 0.124 0.164	v _{Dpkr}	1.5 2.499 2.596 2.713 2.915 3.102 1.5 3.703 3.773 3.845 3.987 4.208	V _{DC} [V 3 2.569 2.65 2.771 2.989 3.2 V _{DC} [V 3 3.692 3.726 3.862 4.007 4.276	6 2.569 2.654 2.782 3.012 3.155	12 2.557 2.645 2.769 3.012 3.375 12 3.706 3.759 3.965 4.224 4.751	24 2.515 2.569 2.812 3.073 3.492 24 3.716 3.769 4.006 4.276 4.807
α	$ \begin{array}{c} qn \\ 0.1 \\ 0.25 \\ 0.50 \\ 0.75 \\ 1 \\ = 0.5 \\ qn \\ 0.1 \\ 0.25 \\ 0.50 \\ 0.75 \\ 1 \\ = 0.75 \\ 1 \\ \end{array} $	1.5 0.453 0.565 0.582 0.621 0.646 $\cdot Q_1 = \xi$ 1.5 0.453 0.453 0.453 0.494 0.582 0.621 0.646 $5 \cdot Q_1 = \xi$	$\begin{array}{c} V_{DC}[V] \\ \hline V_{DC}[V] \\ \hline \\ \hline \\ \hline \\ 0.36 \\ 0.449 \\ 0.463 \\ 0.493 \\ 0.506 \\ \hline \\ \hline \\ \hline \\ V_{DC}[V] \\ \hline \\ 0.276 \\ 0.353 \\ 0.448 \\ 0.47 \\ 0.483 \\ \hline \\ $	$\begin{array}{c} 6 \\ 0.273 \\ 0.341 \\ 0.351 \\ 0.374 \\ 0.368 \\ 0.368 \\ 0.368 \\ 0.182 \\ 0.283 \\ 0.337 \\ 0.348 \\ 0.363 \\ 0.363 \\ 0.363 \\ 0.6 \cdot \mathbf{r} \end{array}$	$12 \\ 0.201 \\ 0.251 \\ 0.245 \\ 0.257 \\ 0.258 \\ = 0.5 \\ 12 \\ 0.168 \\ 0.221 \\ 0.263 \\ 0.276 \\ u = 0.5 \\ 0.5 \\ 0.276 \\ u = 0.5 \\ 0.5 \\ 0.276 \\ u = 0.5 \\ $	24 0.145 0.173 0.181 0.189 0.192 24 0.129 0.167 0.187 0.194 0.201	f_n	1.5 0.007 0.014 0.027 0.037 0.048 1.5 0.007 0.015 0.028 0.04	$\frac{V_{DC}[V]}{3}$ 0.009 0.017 0.033 0.047 0.061 $\frac{V_{DC}[V]}{3}$ 0.009 0.018 0.036 0.05 0.068	6 0.011 0.023 0.044 0.062 0.084	12 0.015 0.031 0.06 0.084 0.12 12 0.016 0.033 0.064 0.09 0.119	24 0.021 0.043 0.083 0.117 0.161 24 0.023 0.045 0.088 0.124 0.164	v _{Dpkr}	1.5 2.499 2.596 2.713 2.915 3.102 1.5 3.703 3.773 3.845 3.987 4.208	V _{DC} [V 3 2.569 2.65 2.771 2.989 3.2 V _{DC} [V 3 3.692 3.726 3.862 4.007 4.276	6 2.569 2.654 2.782 3.012 3.155 6 3.698 3.753 3.879 4.025 4.345	12 2.557 2.645 2.769 3.012 3.375 12 3.706 3.759 3.965 4.224 4.751	24 2.515 2.569 2.812 3.073 3.492 24 3.716 3.769 4.006 4.276 4.807
$\begin{array}{c} C_e \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$ \begin{array}{c} qn \\ 0.1 \\ 0.25 \\ 0.50 \\ 0.75 \\ 1 \\ = 0.5 \\ \hline 0.1 \\ 0.25 \\ 0.50 \\ 0.75 \\ 1 \\ = 0.75 \\ 1 \\ = 0.75 \\ \end{array} $	1.5 0.453 0.565 0.582 0.621 0.646 $Q_1 = 3$ 1.5 0.453 0.453 0.453 0.453 0.453 0.494 0.582 0.621 0.646 $5 \cdot Q_1 = 3$	$\begin{array}{c} V_{DC}[V] \\ \hline V_{DC}[V] \\ \hline \\ \hline \\ 0.36 \\ 0.449 \\ 0.463 \\ 0.493 \\ 0.506 \\ \hline \\ \hline \\ \hline \\ V_{DC}[V] \\ \hline \\ \hline \\ 0.276 \\ 0.353 \\ 0.448 \\ 0.47 \\ 0.483 \\ \hline \\ \hline \\ 0.483 \\ \hline \\ \hline \\ \hline \\ V_{DC}[V] \\ \hline \\ $	$\begin{array}{c} 6 \\ 0.273 \\ 0.341 \\ 0.351 \\ 0.374 \\ 0.368 \\ 0.368 \\ 0.6 \cdot n \\ 7 \\ 6 \\ 0.182 \\ 0.283 \\ 0.337 \\ 0.348 \\ 0.363 \\ 0.363 \\ 0.6 \cdot r \\ 7 $	$12 \\ 0.201 \\ 0.251 \\ 0.245 \\ 0.257 \\ 0.258 \\ = 0.5 \\ 12 \\ 0.168 \\ 0.221 \\ 0.248 \\ 0.263 \\ 0.276 \\ n = 0.5 \\ 0.5 \\ 0.276 \\ n = 0.5 \\ 0.5 $	24 0.145 0.173 0.181 0.189 0.192 24 0.129 0.167 0.187 0.194 0.201		1.5 0.007 0.014 0.027 0.037 0.048 1.5 0.007 0.015 0.028 0.04	$\begin{array}{c} V_{DC}[V\\ \textbf{3}\\ 0.009\\ 0.017\\ 0.033\\ 0.047\\ 0.061\\ \hline \\ V_{DC}[V\\ \textbf{3}\\ 0.009\\ 0.018\\ 0.036\\ 0.05\\ 0.068\\ \hline \\ V_{DC}[V\\ V_{DC}[V]\\ 0.068\\ \hline \\ \end{array}$	6 0.011 0.023 0.044 0.062 0.084	12 0.015 0.031 0.06 0.084 0.12 12 0.016 0.033 0.064 0.09 0.119	24 0.021 0.043 0.083 0.117 0.161 24 0.023 0.045 0.088 0.124 0.164	v _{Dpkr}	1.5 2.499 2.596 2.713 2.915 3.102 1.5 3.703 3.773 3.845 3.987 4.208	$V_{DC}[V$ 3 2.569 2.65 2.771 2.989 3.2 $V_{DC}[V$ 3 3.692 3.726 3.862 4.007 4.276 $V_{DC}[V$	6 2.569 2.654 2.782 3.012 3.155 6 3.698 3.753 3.879 4.025 4.345	12 2.557 2.645 2.769 3.012 3.375 12 3.706 3.759 3.965 4.224 4.751	24 2.515 2.569 2.812 3.073 3.492 24 3.716 3.769 4.006 4.276 4.807
$ \begin{array}{c} C_e \\ \alpha \\ \hline \\ D \\ \hline \\ C_e \\ \hline \\ C_e \\ \hline \\ C_e \end{array} $	qn 0.1 0.25 0.50 0.75 1 = 0.5 · · qn 0.1 0.25 0.50 0.75 1 = 0.75 1 = 0.75	$\begin{array}{c} \textbf{1.5} \\ \textbf{0.453} \\ \textbf{0.565} \\ \textbf{0.582} \\ \textbf{0.621} \\ \textbf{0.646} \\ \hline \textbf{0.646} \\ \hline \textbf{0.453} \\ \textbf{0.453} \\ \textbf{0.453} \\ \textbf{0.494} \\ \textbf{0.582} \\ \textbf{0.621} \\ \textbf{0.646} \\ \hline \textbf{0.646} \\ \hline \textbf{0.5} \ \textbf{Q}_1 = \hline \textbf{1.5} \end{array}$	$\begin{array}{c} V_{DC}[V\\ 3\\ 0.36\\ 0.449\\ 0.463\\ 0.493\\ 0.506\\ \overline{5}\cdot V_{bi} =\\ V_{DC}[V\\ 3\\ 0.276\\ 0.353\\ 0.448\\ 0.47\\ 0.483\\ \overline{5}\cdot V_{bi} =\\ V_{DC}[V\\ 3\\ 3\\ \overline{5}\cdot V_{bi} =\\ V_{DC}[V\\ 3\\ 3\\ 5\cdot V_{bi} =\\ 3\\ 5\cdot V_{bi} =\\ 3\\ 5\cdot V_{bi} =\\ $	$\begin{array}{c} 6 \\ 0.273 \\ 0.341 \\ 0.351 \\ 0.374 \\ 0.368 \\ \hline 0.6 \cdot n \\ \hline \end{array}$ $\begin{array}{c} 6 \\ 0.182 \\ 0.283 \\ 0.337 \\ 0.348 \\ 0.363 \\ \hline \end{array}$ $\begin{array}{c} 6 \\ 0.363 \\ \hline \end{array}$	$12 \\ 0.201 \\ 0.251 \\ 0.245 \\ 0.257 \\ 0.258 \\ = 0.5 \\ 12 \\ 0.168 \\ 0.221 \\ 0.248 \\ 0.263 \\ 0.276 \\ i = 0.5 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 1$	24 0.145 0.173 0.181 0.189 0.192 24 0.129 0.167 0.187 0.194 0.201 24	f_n	1.5 0.007 0.014 0.027 0.037 0.048 1.5 0.007 0.015 0.028 0.04 0.051 1.5	$\begin{array}{c} V_{DC}[V\\ \textbf{3}\\ 0.009\\ 0.017\\ 0.033\\ 0.047\\ 0.061\\ \hline \\ V_{DC}[V\\ \textbf{3}\\ 0.009\\ 0.018\\ 0.036\\ 0.05\\ 0.068\\ \hline \\ V_{DC}[V\\ \textbf{3}\\ \hline \\ \textbf{3}\\ \hline \end{array}$	6 0.011 0.023 0.044 0.062 0.084	12 0.015 0.031 0.06 0.084 0.12 12 0.016 0.033 0.064 0.09 0.119 12	24 0.021 0.043 0.083 0.117 0.161 24 0.023 0.045 0.088 0.124 0.164 24	v _{Dpkr}	1.5 2.499 2.596 2.713 2.915 3.102 1.5 3.703 3.845 3.987 4.208 1.5	$\begin{array}{c} V_{DC}[V\\ \textbf{3}\\ 2.569\\ 2.65\\ 2.771\\ 2.989\\ 3.2\\ \hline \\ V_{DC}[V\\ \textbf{3}\\ 3.692\\ 3.726\\ 3.862\\ 4.007\\ 4.276\\ \hline \\ V_{DC}[V\\ \textbf{3}\\ \hline \\ \textbf{3}\\ \hline \end{array}$	6 2.569 2.654 2.782 3.012 3.155 (1) 6 3.698 3.753 3.879 4.025 4.345	12 2.557 2.645 2.769 3.012 3.375 12 3.706 3.759 3.965 4.224 4.751	24 2.515 2.569 2.812 3.073 3.492 24 3.716 3.769 4.006 4.276 4.807 24
$ \begin{array}{c} C_e \\ \alpha \\ \hline \\ D \\ \hline \\ C_e \\ \hline \\ \alpha \\ \hline \\ \hline \\ C_e \\ \hline \\ C_e \\ \hline \end{array} $	$ \begin{array}{c} qn \\ 0.1 \\ 0.25 \\ 0.50 \\ 0.75 \\ 1 \\ = 0.5 \\ 0.1 \\ 0.25 \\ 0.50 \\ 0.75 \\ 1 \\ = 0.75 \\ 1 \\ qn \\ qn \\ 0.1 \\ 0.$	1.5 0.453 0.565 0.582 0.621 0.646 $\cdot Q_1 = 3$ 1.5 0.453 0.453 0.453 0.494 0.582 0.621 0.646 $5 \cdot Q_1 =$ 1.5 0.646	$\begin{array}{c} V_{DC}[V\\ \hline V_{DC}[V\\ \hline 3\\ 0.36\\ 0.449\\ 0.463\\ 0.493\\ 0.506\\ \hline 5\cdot V_{bi} = \\ V_{DC}[V\\ \hline 3\\ 0.276\\ 0.353\\ 0.448\\ 0.47\\ 0.483\\ \hline 5\cdot V_{bi} = \\ V_{DC}[V\\ \hline 3\\ 0.061\\ \hline \end{array}$	$\begin{array}{c} 6 \\ 0.273 \\ 0.341 \\ 0.351 \\ 0.351 \\ 0.351 \\ 0.368 \\ 0.368 \\ 0.368 \\ \mathbf{0.66 \cdot n} \\ 7 \\ 6 \\ 0.283 \\ 0.283 \\ 0.3377 \\ 0.348 \\ 0.363 \\ 0.363 \\ \mathbf{0.66 \cdot r} \\ 7 \\ 6 \\ 0.039 \end{array}$	$12 \\ 0.201 \\ 0.251 \\ 0.245 \\ 0.257 \\ 0.258 \\ = 0.5 \\ 12 \\ 0.168 \\ 0.221 \\ 0.248 \\ 0.263 \\ 0.276 \\ n = 0.5 \\ 12 \\ 0.032 \\ 0.032 \\ 0.032 \\ 0.033 \\ 0.0$	24 0.145 0.173 0.181 0.189 0.192 24 0.129 0.167 0.187 0.194 0.201 24 0.201	f_n	1.5 0.007 0.014 0.027 0.037 0.048 1.5 0.007 0.015 0.028 0.04 0.051	$\begin{array}{c} V_{DC}[v\\ 3\\ 0.009\\ 0.017\\ 0.033\\ 0.047\\ 0.061\\ \hline \end{array}$	6 0.011 0.023 0.044 0.062 0.084	12 0.015 0.031 0.06 0.084 0.12 12 0.016 0.033 0.064 0.09 0.119 12 0.003	24 0.021 0.043 0.083 0.117 0.161 24 0.023 0.045 0.088 0.124 0.164 24 0.065	v _{Dpkr}	1.5 2.499 2.596 2.713 2.915 3.102 1.5 3.703 3.773 3.845 3.987 4.208 1.5 7.298	$V_{DC}[V$ 3 2.569 2.65 2.771 2.989 3.2 $V_{DC}[V$ 3 3.692 3.726 3.862 4.007 4.276 $V_{DC}[V$ 3 7.252	6 2.569 2.654 2.782 3.012 3.155 6 3.698 3.753 3.879 4.025 4.345	12 2.557 2.645 2.769 3.012 3.375 12 3.706 3.759 3.965 4.224 4.751 12 7.261	24 2.515 2.569 2.812 3.073 3.492 24 3.716 3.769 4.006 4.276 4.807 24 7.266
$ \begin{array}{c} C_e \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$ \begin{array}{c} qn \\ 0.1 \\ 0.25 \\ 0.50 \\ 0.75 \\ 1 \\ = 0.5 \\ qn \\ 0.1 \\ 0.25 \\ 0.50 \\ 0.75 \\ 1 \\ = 0.75 \\ qn \\ 0.1 \\ 0.25 \\ qn \\ 0.1 \\ 0.25 \\ \end{array} $	1.5 0.453 0.565 0.582 0.621 0.646 $\cdot Q_1 = \xi$ 1.5 0.453 0.453 0.494 0.582 0.621 0.646 $5 \cdot Q_1 = \xi$ 1.5 0.646 $5 \cdot Q_1 = \xi$ 1.5 0.076 0.262	$\begin{array}{c} \mathbf{v}_{DC}[v] \\ \mathbf{y}_{DC}[v] \\$	$\begin{array}{c} 6 \\ 0.273 \\ 0.341 \\ 0.351 \\ 0.374 \\ 0.368 \\ \hline 0.368 \\ \hline 0.182 \\ 0.283 \\ 0.337 \\ 0.348 \\ 0.363 \\ \hline 0.363 \\ \hline 0.363 \\ \hline 0.039 \\ 0.136 \\ \hline 6 \\ 0.039 \\ 0.136 \end{array}$	12 0.201 0.251 0.245 0.257 0.258 $= 0.5$ 12 0.168 0.221 0.248 0.263 0.276 $i = 0.5$ 12 0.032 0.112	24 0.145 0.173 0.181 0.189 0.192 24 0.129 0.167 0.187 0.194 0.201 24 0.201	f_n	1.5 0.007 0.014 0.027 0.037 0.048 1.5 0.007 0.015 0.028 0.04 0.051 1.5 0.001 0.003	$\begin{array}{c} V_{DC}[v\\ 3\\ 0.009\\ 0.017\\ 0.033\\ 0.047\\ 0.061\\ \hline \end{array}$	6 0.011 0.023 0.044 0.062 0.084	12 0.015 0.031 0.06 0.084 0.12 12 0.016 0.033 0.064 0.09 0.119 12 0.003 0.006	24 0.021 0.043 0.083 0.117 0.161 24 0.023 0.045 0.088 0.124 0.164 24 0.164	v _{Dpkr} v _{Dpkr}	1.5 2.499 2.596 2.713 2.915 3.102 1.5 3.703 3.773 3.845 3.987 4.208 1.5 7.298 7.381	$\begin{array}{c} V_{DC}[V\\ \textbf{3}\\ 2.569\\ 2.65\\ 2.771\\ 2.989\\ 3.2\\ \hline \end{array}$	6 2.569 2.654 2.782 3.012 3.155 6 3.698 3.753 3.879 4.025 4.345 (] 6 7.236 7.319	12 2.557 2.645 2.769 3.012 3.375 12 3.706 3.759 3.965 4.224 4.751 12 7.261 7.388	24 2.515 2.569 2.812 3.073 3.492 24 3.716 3.769 4.006 4.276 4.807 4.807 24 7.266 7.398
$ \begin{array}{c} C_e \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$ \begin{array}{c} qn \\ 0.1 \\ 0.25 \\ 0.50 \\ 0.75 \\ 1 \\ = 0.5 \\ \hline 0.1 \\ 0.25 \\ 0.50 \\ 0.75 \\ 1 \\ = 0.75 \\ \hline qn \\ 0.1 \\ 0.25 \\ 0.75 \\ 1 \\ \hline 0.75 \\ 1 \\ 0.25 \\ 0.50 \\ \end{array} $	1.5 0.453 0.565 0.582 0.621 0.646 $Q_1 = 3$ 1.5 0.453 0.453 0.453 0.453 0.453 0.453 0.621 0.622 0.621 0.646 $5 \cdot Q_1 = 3$ 1.5 0.076 0.262 0.358	$\begin{array}{c} V_{DC}[V\\ \hline V_{DC}[V\\ \hline 3\\ \hline 0.36\\ \hline 0.449\\ \hline 0.463\\ \hline 0.493\\ \hline 0.493\\ \hline 0.493\\ \hline 0.493\\ \hline 0.493\\ \hline 0.506\\ \hline 5\cdot V_{bi} = \\ \hline V_{DC}[V\\ \hline 3\\ \hline 0.276\\ \hline 0.353\\ \hline 0.448\\ \hline 0.47\\ \hline 0.483\\ \hline 5\cdot V_{bi} = \\ \hline V_{DC}[V\\ \hline 3\\ \hline 0.061\\ \hline 0.18\\ \hline 0.265\\ \hline \end{array}$	$\begin{array}{c} 6 \\ 0.273 \\ 0.341 \\ 0.351 \\ 0.374 \\ 0.368 \\ 0.368 \\ 0.363 \\ 0.182 \\ 0.283 \\ 0.337 \\ 0.348 \\ 0.363 \\ 0.363 \\ 0.363 \\ 0.363 \\ 0.039 \\ 0.136 \\ 0.197 \end{array}$	$12 \\ 0.201 \\ 0.251 \\ 0.245 \\ 0.257 \\ 0.258 \\ = 0.5 \\ 12 \\ 0.168 \\ 0.221 \\ 0.248 \\ 0.263 \\ 0.276 \\ 12 \\ 0.276 \\ 12 \\ 0.032 \\ 0.112 \\ 0.15 \\ 0.15 \\ 0.13 \\ 0.15 \\ 0.13 \\ 0.13 \\ 0.13 \\ 0.13 \\ 0.13 \\ 0.13 \\ 0.13 \\ 0.13 \\ 0.13 \\ 0.13 \\ 0.13 \\ 0.13 \\ 0.13 \\ 0.13 \\ 0.13 \\ 0.15 \\ 0.13 \\ 0.13 \\ 0.13 \\ 0.13 \\ 0.13 \\ 0.13 \\ 0.15 \\ 0.13 \\ 0$	24 0.145 0.173 0.181 0.189 0.192 24 0.129 0.167 0.187 0.194 0.201 24 0.201 24 0.027 0.083 0.111	f_n	1.5 0.007 0.014 0.027 0.037 0.048 1.5 0.007 0.015 0.028 0.04 0.051 1.5 0.001 0.003 0.006	$\begin{array}{c} V_{DC}[v] \\ \textbf{3} \\ 0.009 \\ 0.017 \\ 0.033 \\ 0.047 \\ 0.061 \\ \hline \\ V_{DC}[v] \\ \textbf{3} \\ 0.009 \\ 0.018 \\ 0.036 \\ 0.05 \\ 0.068 \\ \hline \\ V_{DC}[v] \\ \textbf{3} \\ 0.002 \\ 0.004 \\ 0.007 \\ \hline \end{array}$	6 0.011 0.023 0.044 0.062 0.084	12 0.015 0.031 0.06 0.084 0.12 12 0.016 0.033 0.064 0.09 0.119 12 0.003 0.0003 0.0003 0.0006 0.013	24 0.021 0.043 0.083 0.117 0.161 24 0.023 0.045 0.088 0.124 0.164 24 0.164	v _{Dpkr}	1.5 2.499 2.596 2.713 2.915 3.102 1.5 3.703 3.773 3.845 3.987 4.208 4.208 1.5 7.298 7.381 7.516	$\begin{array}{c} V_{DC}[V\\ \textbf{3}\\ 2.569\\ 2.65\\ 2.771\\ 2.989\\ 3.2\\ \hline \end{array}$	6 2.569 2.654 2.782 3.012 3.155 6 3.698 3.753 3.879 4.025 4.345 7] 6 7.236 7.319 7.579	12 2.557 2.645 2.769 3.012 3.375 12 3.706 3.759 3.965 4.224 4.751 12 7.261 7.388 7.647	24 2.515 2.569 2.812 3.073 3.492 24 3.716 3.769 4.006 4.276 4.807 24 7.266 7.398 7.69
$ \begin{array}{c} C_e \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	qn 0.1 0.25 0.50 0.75 1 = 0.5 · qn 0.1 0.25 0.50 0.75 1 = 0.75 1 0.75 0.50 0.75 0.75 0.50 0.75 0.75 0.50 0.75	1.5 0.453 0.565 0.582 0.621 0.646 $Q_1 = 3$ 1.5 0.453 0.453 0.453 0.494 0.582 0.621 0.646 $5 \cdot Q_1 =$ 1.5 0.646 $5 \cdot Q_1 =$ 1.5 0.076 0.262 0.358 0.382	$\begin{array}{c} \mathbf{v}_{DC}[v] \\ 3 \\ 0.36 \\ 0.449 \\ 0.463 \\ 0.493 \\ 0.506 \\ \hline 5 \cdot V_{bi} = \\ V_{DC}[v] \\ 3 \\ 0.276 \\ 0.353 \\ 0.448 \\ 0.47 \\ 0.483 \\ \hline 5 \cdot V_{bi} = \\ V_{DC}[v] \\ 3 \\ 0.061 \\ 0.18 \\ 0.265 \\ 0.29 \end{array}$	$\begin{array}{c} 6 \\ 0.273 \\ 0.341 \\ 0.351 \\ 0.374 \\ 0.368 \\ 0.368 \\ 0.368 \\ 0.368 \\ 0.363 \\ 0.337 \\ 0.348 \\ 0.363 \\ 0.363 \\ 0.363 \\ 0.363 \\ 0.136 \\ 0.136 \\ 0.136 \\ 0.137 \\ 0.215 \\ 0.215 \end{array}$	$12 \\ 0.201 \\ 0.251 \\ 0.245 \\ 0.257 \\ 0.258 \\ = 0.5 \\ 12 \\ 0.168 \\ 0.221 \\ 0.248 \\ 0.263 \\ 0.276 \\ a = 0.5 \\ 12 \\ 0.032 \\ 0.112 \\ 0.032 \\ 0.112 \\ 0.15 \\ 0.162 \\ 0.16$	24 0.145 0.173 0.181 0.189 0.192 24 0.129 0.167 0.187 0.194 0.201 24 0.027 0.083 0.111 0.119	f_n	1.5 0.007 0.014 0.027 0.037 0.048 1.5 0.007 0.015 0.028 0.04 0.051 1.5 0.001 0.003 0.003 0.006 0.008	$\begin{array}{c} V_{DC}[v] \\ \textbf{3} \\ 0.009 \\ 0.017 \\ 0.033 \\ 0.047 \\ 0.061 \\ \hline \\ V_{DC}[v] \\ \textbf{3} \\ 0.009 \\ 0.018 \\ 0.005 \\ 0.018 \\ \hline \\ 0.005 \\ 0.068 \\ \hline \\ V_{DC}[v] \\ \textbf{3} \\ 0.002 \\ 0.004 \\ 0.007 \\ 0.01 \\ \hline \end{array}$	6 0.011 0.023 0.044 0.062 0.084	12 0.015 0.031 0.06 0.084 0.12 12 0.016 0.033 0.064 0.09 0.119 0.119 12 0.003 0.006 0.003 0.006 0.013 0.0018	24 0.021 0.043 0.117 0.161 24 0.023 0.045 0.088 0.124 0.164 24 0.164 24 0.005 0.009 0.017 0.024	v _{Dpkr}	1.5 2.499 2.596 2.713 2.915 3.102 1.5 3.703 3.773 3.845 3.987 4.208 1.5 7.298 7.381 7.516 7.868	$\begin{array}{c} V_{DC}[V\\ \textbf{3}\\ 2.569\\ 2.65\\ 2.771\\ 2.989\\ 3.2\\ \hline \end{array}\\ \hline \\ V_{DC}[V\\ \textbf{3}\\ 3.692\\ 3.726\\ 3.862\\ 4.007\\ 4.276\\ \hline \\ V_{DC}[V\\ \textbf{3}\\ \hline \\ V_{DC}[V\\ \textbf{3}\\ 7.252\\ 7.338\\ 7.542\\ 7.804\\ \hline \end{array}$	6 2.569 2.654 2.782 3.012 3.155 6 3.698 3.753 3.879 4.025 4.345 7 6 7.236 7.319 7.579 7.859	12 2.557 2.645 2.769 3.012 3.375 12 3.706 3.759 3.965 4.224 4.751 12 7.261 7.388 7.647 7.935	24 2.515 2.569 2.812 3.073 3.492 24 3.716 3.769 4.006 4.276 4.807 24 7.266 7.398 7.69 7.973

value with precision. Peak voltage value, as well as output

was important to a priori determine the external capacitance power and other performance parameters, are equal in both cases.

B. Simulated and Experimental Results

Fig. 8 shows the class E amplifier that has been designed with this method, simulated and built for f = 100 MHz, D = 0.3, and Q = 5, and output power of 1 W. Precise component values are shown in Table III. The device used is PolyFET's P123 LDMOS and the nonlinear dependence of $C_{out}(v)$ has been extracted from datasheet information. In the design, the amplifier optimum load resistance was 24 Ω based on the method (theory) presented in this paper. A value of 16.2 Ω was obtained when performing SPICE simulations and experiments. The difference between theory and experiment is the inclusion of on resistance and component losses in the SPICE simulation [16]. The results have been simulated using SPICE. The circuit has been built and tested. The ZVS was achieved straight away at the desired 100-MHz frequency without any need of optimization loops in the design process. The expected efficiency (72.7%) is almost exactly achieved (71.4%) and could be improved with a lower on resistance device. Fig. 9 shows the results obtained in the simulation for the drain voltage waveform compared to the oscilloscope captured plot for the same waveform in the experiment. A specific D-variable driver has been designed and built for this purpose.

VI. CONCLUSION

In this paper, a novel and straightforward design method has been presented for class E amplifiers for any combination of nonlinear and linear capacitances shunting the device, duty cycle, output harmonic content, and possible nonlinear dependence. Losses in all the elements may also be included to predict the performance. The advantage of this method is that, to account for the nonlinearities, an equivalent linear capacitance is computed. This equivalent capacitance can be directly substituted in any other class E design method, except for a few parameters that need to be recalculated. Guidelines to calculate this capacitance are provided. Some representative results are summarized in graphs and additional results are presented in tables. To verify the method, three different alternatives have been tested, which are: 1) comparison with results of an existing less general analysis; 2) simulation, and 3) experimental verification; all of them yielding positive results.

APPENDIX

NUMERICAL RESULTS IN TABLES

In Table IV, an extensive set of numerical results for the design process are given. The data provided covers a good number of representative examples for three different values D, five possible values of α , eight possible values of supply voltage, and two possible values of n (n = 0.3 and n = 0.5) and for $V_{\rm bi} = 0.6$ and $Q_1 = 5$. These are only examples provided here for simplicity, but any particular combination of all the parameters mentioned previously can be numerically computed with this design procedure. The tables for $Q_1 = 2$ and $Q_1 = 10$ are directly obtainable from the authors upon request.

ACKNOWLEDGMENT

The authors would like to thank PolyFET, Camarillo, CA, for their generous donation of transistor samples.

REFERENCES

- N. O. Sokal and A. D. Sokal, "Class E—A new class of high-efficiency tuned single-ended switching power amplifiers," *IEEE J. Solid-State Circuits*, vol. SC-10, no. 3, pp. 168–176, Jun. 1975.
- [2] M. J. Chudobiak, "The use of parasitic nonlinear capacitors in class-E amplifiers," *IEEE Trans. Circuits Syst. I, Fundam. Theory and Appl.*, vol. 41, no. 10, pp. 941–944, Dec. 1994.
- [3] T. Suetsugu and M. K. Kazimierckzuk, "Comparison of class-E amplifier with nonlinear and linear shunt capacitance," *IEEE Trans. Circuits Syst. I, Fundam. Theory and Appl.*, vol. 50, no. 8, pp. 1089–1097, Aug. 2003.
- [4] ——, "Analysis and design of class-E amplifier with shunt capacitance composed of nonlinear and linear capacitances," *IEEE Trans. Circuits Syst. I, Fundam. Theory and Appl.*, vol. 51, no. 7, pp. 1261–1268, Jul. 2004.
- [5] A. Mediano, "Contribution al estudio de los amplificadores de potencia de RF clase E. influencia de la capacidad de salida del dispositive active," (in Spanish) Ph.D. dissertation, Dept. Electron. Commun. Eng., Univ. Zaragoza, Zaragoza, Spain, 1997.
- [6] C. Chan and C. Toumazou, "Design of class-E power amplifier with nonlinear transistor output capacitance and finite DC feed inductance," in *Int Circuits Syst. Symp.*, Sydney, Australia, Jun. 2001, pp. 1129–1132.
- [7] P. Alinikula, D. K. Choi, and S. Long, "Design of class-E power amplifier with nonlinear parasitic capacitance," *IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process.*, vol. 46, no. 2, pp. 114–119, Feb. 1999.
- [8] N. O. Sokal and R. Redl, "Power transistor output port model," *RF Des.*, vol. 10, pp. 45–48, Jun. 1987.
- [9] A. Mediano, P. Molina, and J. Navarro, "Class E RF/microwave power amplifier: Linear 'equivalent' of transistor's nonlinear output capacitance, normalized design and maximum operating frequency vs. output capacitance," in *IEEE MTT-S Int. Microw. Symp. Dig.*, Boston, MA, 2000, pp. 783–786.
- [10] P. Molina-Gaudo, C. Bernal, and A. Mediano, "Design technique for class E RF/MW amplifiers with linear equivalent of transistor's output capacitance," in *Proc. IEEE Asia–Pacific Microw. Conf.*, Dec. 2005, vol. 2, 4 pp.
- [11] A. Mediano and P. Molina, "Frequency limitation of a high-efficiency class E tuned power amplifier due to a shunt capacitance," in *IEEE MTT-S Int. Microw. Symp. Dig.*, Jun. 1999, pp. 363–366.
- [12] J. M. Burdío and A. Martinez, "A unified discrete-time state-space model for switching converters," *IEEE Trans. Power Electron.*, vol. 10, no. 6, pp. 694–707, Nov. 1995.
- [13] M. Kazimierczuk and K. Puczko, "Exact analysis of a class E tuned power amplifier at any Q and switch duty cycle," *IEEE Trans. Circuits Syst.*, vol. CAS-34, no. 2, pp. 149–159, Feb. 1987.
- [14] P. Molina-Gaudo, "A contribution to nonlinear class-E amplifier device modelling and parameter extraction," Ph.D. dissertation, Dept. Electron. Commun. Eng., Univ. Zaragoza, Zaragoza, Spain, 2004.
- [15] D. Kessler and M. K. Kazimierckzuk, "Power losses and efficiency of class E power amplifier at any duty ratio," *IEEE Trans. Circuits Syst. I, Fundam. Theory Appl.*, vol. 51, no. 9, pp. 1675–1689, Dec. 1996.
- [16] N. Sokal, "Class E RF power amplifiers," *QEX/Commun. Quarterly Mag.*, vol. 46, no. 12, pp. 2220–2225, Jan./Feb. 2001.

Arturo Mediano (M'98–SM'06) received the M.Sc. and Ph.D. degrees in electrical engineering from the University of Zaragoza, Zaragoza, Spain, in 1990 and 1997, respectively.

Since 1992, he has been a Professor with special interests in RF (HF/VHF/UHF) and electromagnetic interference (EMI)/electromagnetic compatibility (EMC) design for telecommunications and electrical engineers. From 1990, he has been involved in design and management responsibilities for research and development projects in the RF field for commu-

nications, industry, and scientific applications. His research interest is focused on high-efficiency switching-mode RF power amplifiers, where he possesses experience in applications like mobile communication radios, through-earth communication systems, induction heating, plasmas for industrial applications, and RF identification (RFID).

Dr. Mediano is an active member of the MTT-17 (HF/VHF/UHF technology) Technical Committee of the IEEE Microwave Theory and Techniques Society (IEEE MTT-S) since 1999.

Pilar Molina Gaudó (S'98–M'99–SM'05) received the M.Sc. (equivalent) degree in telecommunications engineering and Ph.D. degree in electronic engineer from the University of Zaragoza, Zaragoza, Spain, in 1997 and 2004, respectively.

From 1995 to 1996, she was a Visiting Student with the Technical University of Munich. Since 2000, she has been an Assistant Professor with the University of Zaragoza, where her research concerns the area of power amplifiers for HF/UHF/VHF bands.

Dr. Molina-Gaudó was a member of the IEEE Women in Engineering Committee (2001–2005). She was an elected Region 8 student activities vice-chair (2003–2004) and a member of the Region 8 Committee, the R8-OpCom, and the IEEE RAB Student Activities Committee (2003–2004). She is counselor of the Student Branch at her the University of Zaragoza. She was member of the 2004 and 2005 IEEE History Committee and is current member of the IEEE New Initiatives Committee and other subcommittees.

Carlos Bernal (S'03) received the B.Sc. degree in electronics engineering and M.Sc. degree in industrial engineering from the University of Zaragoza, Zaragoza, Spain, in 1997 and 2000, respectively, and is currently working toward the Ph.D. degree at the University of Zaragoza.

He is currently an Assistant Professor with the Department of Electronics and Communications, University of Zaragoza, where he is currently involved in the field of high-frequency resonant power inverters and direct digital synthesizers.

射频和天线设计培训课程推荐

易迪拓培训(www.edatop.com)由数名来自于研发第一线的资深工程师发起成立,致力并专注于微 波、射频、天线设计研发人才的培养;我们于 2006 年整合合并微波 EDA 网(www.mweda.com),现 已发展成为国内最大的微波射频和天线设计人才培养基地,成功推出多套微波射频以及天线设计经典 培训课程和 ADS、HFSS 等专业软件使用培训课程,广受客户好评;并先后与人民邮电出版社、电子 工业出版社合作出版了多本专业图书,帮助数万名工程师提升了专业技术能力。客户遍布中兴通讯、 研通高频、埃威航电、国人通信等多家国内知名公司,以及台湾工业技术研究院、永业科技、全一电 子等多家台湾地区企业。

易迪拓培训课程列表: http://www.edatop.com/peixun/rfe/129.html

射频工程师养成培训课程套装

该套装精选了射频专业基础培训课程、射频仿真设计培训课程和射频电 路测量培训课程三个类别共 30 门视频培训课程和 3 本图书教材; 旨在 引领学员全面学习一个射频工程师需要熟悉、理解和掌握的专业知识和 研发设计能力。通过套装的学习,能够让学员完全达到和胜任一个合格 的射频工程师的要求…

课程网址: http://www.edatop.com/peixun/rfe/110.html

ADS 学习培训课程套装

该套装是迄今国内最全面、最权威的 ADS 培训教程,共包含 10 门 ADS 学习培训课程。课程是由具有多年 ADS 使用经验的微波射频与通信系 统设计领域资深专家讲解,并多结合设计实例,由浅入深、详细而又 全面地讲解了 ADS 在微波射频电路设计、通信系统设计和电磁仿真设 计方面的内容。能让您在最短的时间内学会使用 ADS,迅速提升个人技 术能力,把 ADS 真正应用到实际研发工作中去,成为 ADS 设计专家...

课程网址: http://www.edatop.com/peixun/ads/13.html

HFSS 学习培训课程套装

该套课程套装包含了本站全部 HFSS 培训课程,是迄今国内最全面、最 专业的 HFSS 培训教程套装,可以帮助您从零开始,全面深入学习 HFSS 的各项功能和在多个方面的工程应用。购买套装,更可超值赠送 3 个月 免费学习答疑,随时解答您学习过程中遇到的棘手问题,让您的 HFSS 学习更加轻松顺畅…

课程网址: http://www.edatop.com/peixun/hfss/11.html

CST 学习培训课程套装

该培训套装由易迪拓培训联合微波 EDA 网共同推出,是最全面、系统、 专业的 CST 微波工作室培训课程套装,所有课程都由经验丰富的专家授 课,视频教学,可以帮助您从零开始,全面系统地学习 CST 微波工作的 各项功能及其在微波射频、天线设计等领域的设计应用。且购买该套装, 还可超值赠送 3 个月免费学习答疑…

课程网址: http://www.edatop.com/peixun/cst/24.html

HFSS 天线设计培训课程套装

套装包含 6 门视频课程和 1 本图书,课程从基础讲起,内容由浅入深, 理论介绍和实际操作讲解相结合,全面系统的讲解了 HFSS 天线设计的 全过程。是国内最全面、最专业的 HFSS 天线设计课程,可以帮助您快 速学习掌握如何使用 HFSS 设计天线,让天线设计不再难…

课程网址: http://www.edatop.com/peixun/hfss/122.html

13.56MHz NFC/RFID 线圈天线设计培训课程套装

套装包含 4 门视频培训课程,培训将 13.56MHz 线圈天线设计原理和仿 真设计实践相结合,全面系统地讲解了 13.56MHz 线圈天线的工作原理、 设计方法、设计考量以及使用 HFSS 和 CST 仿真分析线圈天线的具体 操作,同时还介绍了 13.56MHz 线圈天线匹配电路的设计和调试。通过 该套课程的学习,可以帮助您快速学习掌握 13.56MHz 线圈天线及其匹 配电路的原理、设计和调试…

详情浏览: http://www.edatop.com/peixun/antenna/116.html

我们的课程优势:

- ※ 成立于 2004 年, 10 多年丰富的行业经验,
- ※ 一直致力并专注于微波射频和天线设计工程师的培养,更了解该行业对人才的要求
- ※ 经验丰富的一线资深工程师讲授,结合实际工程案例,直观、实用、易学

联系我们:

- ※ 易迪拓培训官网: http://www.edatop.com
- ※ 微波 EDA 网: http://www.mweda.com
- ※ 官方淘宝店: http://shop36920890.taobao.com

专注于微波、射频、大线设计人才的培养 **房迪拓培训** 官方网址: http://www.edatop.com

淘宝网店:http://shop36920890.taobao.cor